Measurement of differential cross sections of elastic scattering of protons by nuclei 14N at Ep, lab. = 0.7 - 1.1 MeV

Authors

  • N. Burtebayev Institute of Nuclear Physics, Almaty, Kazakhstan
  • Zh.K. Kerimkulov Институт ядерной физики, г. Алматы, Казахстан
  • A.V. Yushkov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • D.M. Zazulin Al-Farabi Kazakh National University, Institute of Nuclear Physics, Kazakstan, Almaty
  • D.K. Alimov Al-Farabi Kazakh National University, Institute of Nuclear Physics, Kazakstan, Almaty
  • D.M. Janseitov Institute of Nuclear Physics, Almaty; L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
  • E.S. Mukhamejanov Institute of Nuclear Physics, Almaty, Kazakhstan
  • M. Nassurlla Al-Farabi Kazakh National University; Institute of Nuclear Physics, Kazakstan, Almaty
  • A.K. Shakirov Al-Farabi Kazakh National University; Institute of Nuclear Physics, Kazakstan, Almaty
  • A. Pattayev International Kazakh-Turkish University. A.Yasavi, Turkestan, Kazakhstan

Abstract

The differential cross sections of elastic 14N(p,p)14N scattering at energies  of protons 0.7 - 1.1 MeV and scattering angles θc.m. = 320-1660 have been measured. The analysis of data in this work and the available literature data on elastic scattering of protons on 14N nuclei in the optical model were obtained. The optimal value of the optical potential parameters that will be needed in the calculation of the processes occurring in hybrid nuclear reactors and thermonuclear installations. Theoretical analysis was carried out using a FRESCO settlement program. Parameters of the potential corresponding to optimally match of the experimental and calculated values of the differential cross sections, were found minimizing the value of χ2.

References

1 V. Havrnek, V. Hnatowicz, J. Kvltek, Czech. Jour. of Phys., 41 (10), 921-928, (2010).

2 S. Bashkin, R.R. Carlson, and R.A. Douglas, Phys. Rev., 114(6), 1552-1553, (1959).

3 C.R. Bolmgren, G.D Freier, J.G. Likely and K.F. Famularo, Phys. Rev., 105(1), 210-212, (1959).

4 R.J. deBoer, D.W. Bardayan, J. Gorres, P.J. LeBlanc, K.V. Manukyan, M.T. Moran, K. Smith, W. Tan, E. Uberseder and M. Wiescher, Phys. Rev. C 91, 045804, (2015).

5 F.B. Hagedorn, F.S. Mozer, T.S. Webb, W.A. Fowler and C.C Louritsen // Physical Review, 105(1), 219-226, (1957).

6 A.R. Ramos, A. Paul, L. Rijniers, M.F. da Silva, J.C. Soares, Nucl. Instr. and Meth. in Phys. Res. B 190, 95–99, (2002).

7 W. Tautfest George, S. Rubin, Phys. Rev., 103(1), 196-199, (1956).

8 N. Burtebayev, S.B. Igamov, R.J. Peterson, R. Yarmukhamedov and D.M. Zazulin, Phys. Rev. C 78, 035802, (2008).

9 S.B. Dubovichenko, N. Burtebayeva, D.M. Zazulin, ZH.K. Kerimkulov, A.S.A. Amar, Nucl. Physics, 74(7), 1013-1028, (2011) (in russ).

Downloads

Published

2016-09-12

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics