Temperature anisotropy relaxation processes in dense plasma
DOI:
https://doi.org/10.26577/RCPh.2020.v75.i4.04Кілттік сөздер:
Coulomb logarithm, dense plasma, effective potentials, inertial confinement fusion, temperature anisotropy relaxationАннотация
In this work the relaxation processes of dense plasmas were studied. The relaxation rate of a Maxwellian velocity distribution function that has an initially anisotropic temperature (T∥ ≠ T^) is an important physical process inertial confinement fusion plasmas. Relaxation characteristics in dense plasmas were studied on the basis of the effective potentials using the Coulomb logarithm. The effective potential is derived using the long wavelength expansion of the polarization function and quantum potential which takes into account the finite value of the interaction potential at close distance. In presented work temperature anisotropy relaxation processes in dense, non-isothermal plasma are considered. These interaction potential between particles take into account such collective effects as the ionization energy depression (reduction) and exchange-correlation effects. Therefore, this allowed us to examine the sensitivity of the computed relaxation time and the corresponding equilibrium plasma temperature on the quality of the description of the screening effect in dense plasmas.
Библиографиялық сілтемелер
2 W. Ebeling, , et al, Contrib. Plasma Phys. 48, 670-685 (2008).
3 N.A. Tahir, et al, New Journal of Physics, 12, 073022 (2010).
4 A.D. Fertman, et al, Nucl. Instr. Meth. in Phys. Res. B 247, 119–204 (2006).
5 J.N. Glosli et al, Phys. Rev. E 78, 025401 (2008).
6 G. Dimonte and J.Daligault, Phys. Rev. Lett. 10, 135001 (2008).
7 L.X. Benedict, et al. Molecular Dynamics Simulations of Electron-Ion Temperature Equilibration in an SF6 Plasma // Phys. Rev. Lett. - 2009. - Vol. 102. -P.205004.
8 L.S. Brown, D.L. Preston, and R.L. Singleton Jr., Phys. Rep. 410, 237 (2005).
9 M.W.C. Dharma-wardana, Phys. Rev. Lett. 101, 035002 (2008).
10 L. Spitzer, Physics of Fully Ionized Gases, (N.Y.: Interscience, 1962), 586 p.
11 D.O. Gericke, M.S. Murillo, and M. Schlanges, Phys. Rev. E. 65, 036418 (2002).
12 J. Vorberger, D.O. Gericke, High Energy Density Physics, 10, 1-8 (2014).
13 J. Vorberger, D.O. Gericke, Phys. Plasma, 16, 082702 (2009).
14 S.K. Kodanova, T.S. Ramazanov, M.K. Issanova, Zh.A. Moldabekov, and G. Nigmetova, Contrib. Plasma Phys. 55 (2-3), 271 – 276 (2015).
15 S. Ichimaru and M.N. Rosenbluth, Phys. Fluids, 13, 2778 (1970).
16 S. Baalrud and J. Daligault, Contrib. Plasma Phys. 57, 238–251 (2017).
17 T.S. Ramazanov et al., Rec.Contr.Phys., 65 (2), 44-50 (2018).
18 T. Ott, M. Bonitz, P. Hartmann, and Z. Donkó, Phys. Rev. E 95, 013209 (2018).
19 S.K. Kodanova, M.K. Issanova, S.M. Amirov, T.S. Ramazanov, A. Tikhonov, and Z.A. Moldabekov, Matter and Radiation at Extremes, 3 (1), 40-49 (2018).
20 C.A. Ordonez and M.I. Molina, Phys. Plasmas, 1, 2515 (1994).
21 T.S. Ramazanov and S.K. Kodanova, Phys. Plasmas, 8, 5049 (2001).
22 A.M. Temіrbek et al., Rec.Contr.Phys. 74 (3), 30-36 (2020).
23 T.N. Ismagambetova, and M.Т. Gabdullin, Rec.Contr.Phys. 68 (1), 30-36 (2019).
24 S.K. Kodanova, T.S. Ramazanov, A.K. Khikmetov, and M.K. Issanova, Contributions to Plasma Physics, 58 (10), 946-951 (2018).
25 S.K. Kodanova, M.K. Issanova, T.S. Ramazanov, A.K. Khikmetov, and S.A. Maiorov, Contributions to Plasma Physics, 56 (6), 201800178 (2019).