БИОСЕНСОРЛАРДЫҢ ЭЛЕКТРОХИМИЯЛЫҚ ҚАСИЕТТЕРІНІҢ МЫРЫШ ОКСИДІ ҚАБАТТАРЫНЫҢ МОРФОЛОГИЯСЫНА ТӘУЕЛДІЛІГІ
DOI:
https://doi.org/10.26577/RCPh.2022.v83.i4.04Кілттік сөздер:
мырыш оксиді, электрохимиялық қасиеттері, биосенсор, глюкозаАннотация
Diabetes mellitus, associated with insulin deficiency and high blood glucose, is one of the leading causes of death and disability in the world. Continuous monitoring of blood glucose levels can help prevent heart disease, kidney failure, or blindness. In this regard, fast, pricese and economical identification of blood glucose levels is necessary. Therefore, the manufacture of an economical, easy-to-use, exact, portable and fast glucose biosensor is of critical importance in diabetes mellitus. Electrochemical biosensors for glucose identification are widely used. In this work, arrays of highly oriented ZnO nanorods synthesized by a low-cost method of chemical deposition from solution was used as an amperometric enzymatic electrode in which glucose oxidase (GOx) was immobilized by physical adsorption. The morphology, optical and electrochemical properties of the fabricated modified ITO/ZnO/GOx/Nafion electrode were studied. The influence of the morphology of zinc oxide layers on the activity of the enzyme and biosensor was investigated. The resulting modified ITO/ZnO/GOx/Nafion electrodes with arrays of ordered thin ZnO nanorods showed a high sensitivity of ~50 μA/mM·cm2 for the detection of glucose in solution, i.e. ZnO nanorods with a high specific surface area are an excellent platform for the immobilization of glucose oxidase in biosensors.
Библиографиялық сілтемелер
2 Jayakumar K., Bennett R., Leech D. Electrochemical glucose biosensor based on an osmium redox polymer and glucose oxidase grafted to carbon nanotubes: A design-of-experiments optimisation of current density and stability // Electrochimica Acta. – 2021. – Vol. 371. – P.137845.
3 Haghparas Z., Kordrostami Z., Sorouri M., Rajabzadeh M., Khalifeh R. Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures // Sci. Rep. – 2021. – Vol. 11. – P.344.
4 Arif D., Hussain Z., Sohail M., Liaqat M.A., Khan M.A., Noor T. A Non-enzymatic Electrochemical Sensor for Glucose Detection Based on Ag@TiO2@ Metal-Organic Framework (ZIF-67) Nanocomposite // Front. Chem. – 2020. – Vol. 8. – P. 573510.
5 Hassan M.H., Vyas C., Grieve B., Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing // Sensors (Basel). – 2021. – Vol. 21(14). – P. 4672.
6 Nakhaeki H., Mogharnasi M., Fanaei H. Effect of swimming training on levels of asprosin, lipid profile, glucose and insulin resistance in rats with metabolic syndrome // Obesity Med. – 2019. – Vol. 15. – P.100111.
7 Tang J., Wei L., He S., Li J., Nan D., Ma L., Shen W., Kang F., Lv R., Huang Z. A Highly Sensitive Electrochemical Glucose Sensor Based on Room Temperature Exfoliated Graphite-Derived Film Decorated with Dendritic Copper // Materials. – 2021. – Vol. 14 (17). – P. 5067.
8 Kedruk Y.Y., Baigarinova G.A., Gritsenko L.V., Cicero G., Abdullin Kh. A. Facile Low-Cost Synthesis of Highly Photocatalitycally Active Zinc Oxide Powders // Frontiers of Materials. – 2022. – Vol. 9. – p. 1-11.
9 Maraeva E.V., Permiakov N.V., Kedruk Y.Y., Gritsenko L.V., Abdullin Kh.A. Creating a virtual device for processing the results of sorption measurements in the study of zinc oxide nanorods // Chimica Techno Acta. – 2020. – Vol. 7, №4. - p. 154-158.
10 Aydoğdu G., Zeybek D.K., Pekyardımcı Ş., Kılıç E. A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum // Artif. Cells Nanomed. Biotechnol. – 2013. – Vol. 41 (5). – p. 332–338.
11 Arya S.K., Saha S., Ramirez-Vick J.E., Gupta V., Bhansali Sh., Singh S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review // Anal. Chim. Acta. – 2012. – Vol. 737. – p. 1–21.
12 Bagyalakshmi S., Sivakami A., Balamurugan K.S. A ZnO nanorods based enzymatic glucose biosensor by immobilization of glucose oxidase on a chitosan film // Obesity Medicine. – 2020. – Vol. 18. – P. 100229.
14 Zhai Y., Zhai Sh., Chen G., Zhang K., Yue Q., Wang L., Liu J., Jia J. Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase // J. Electroanal. Chem. – 2011. – Vol. 656. – p. 198–205.
15 Saidi R., Ashrafizadeh F., Raeissi K., Kharaziha M. Electrochemical aspects of zinc oxide electrodeposition on Ti6Al4V alloy // Surface and Coatings Technology. – 2020. – Vol. 402. – P. 126297.
16 Majid F., Bashir M., Bibi I., Raza A., Ezzine S., Alwadai N., Iqbal M. ZnO nanofibers fabrication by hydrothermal route and effect of reaction time on dielectric, structural and optical properties // Journal of Materials Research and Technology. – 2022. – Vol. 18. – p. 4019-4029.
17 Jones A., Mistry K., Kao M., Shahin A., Yavuz M., Musselman K.P. In-situ spatial and temporal electrical characterization of ZnO thin films deposited by atmospheric pressure chemical vapour deposition on flexible polymer substrates // Sci Rep. – 2020. – Vol.10. – P.19947.
18 Wang J., He Y., Luo T.-Ch., Li Y., Zhou Zh., Fan B., Li J., Wang G. Simulation and experimental verification study on the process parameters of ZnO-MOCVD // Ceramics International – 2021. – Vol. 47, Issue 11. – p. 15471-15482.
19 Vasin A.V., Rusavsky A.V., Bortchagovsky E.G., Gomeniuk Y.V., Nikolenko A.S., Strelchuk V.V., Yatskiv R., Tiagulskyi S., Prucnal S., Skorupa W., Nazarov A.N. Methane as a novel doping precursor for deposition of highly conductive ZnO thin films by magnetron sputtering // Vacuum. – 2020. – Vol. 174. – P.109199.
20 Podrezova L.V., Cauda V., Stassi S., Cicero G., Abdullin Kh.A., Alpysbaeva B.E. Properties of ZnO nanorods grown by hydrothermal synthesis on conductive layers // Crystal Research and Technology. – 2014. – Vol. 49 (8). – p. 599-605.
21 Kurudirek S.V., Pradel K.C., Summers C.J. Low-temperature hydrothermally grown 100 μm vertically well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property // J. Alloys Compd. – 2017. – Vol. 702. – p. 700–709.
22 Rusdi R., Rahman A.A., Mohamed N.S., Kamarudin N., Kamarulzaman N. Preparation and Band gap Energies of ZnO Nanotubes, Nanorods and Spherical Nanostructures // Powder Technol. – 2011. – Vol. 210. – p. 18–22.