ССР-Қ реакторындағы титан бериллид үлгілерінің сәулелену тәжірибесін термофизикалық талдау

Авторлар

DOI:

https://doi.org/10.26577/RCPh.2023.v84.i1.08

Кілттік сөздер:

temperature field, titanium beryllide, WWR-K reactor, analysis, radiation heating

Аннотация

In a fusion reactor, it was planned to use metallic beryllium as a neutron multiplier material to maintain neutron balance. However, metallic beryllium has a few disadvantages associated with its behavior when interacting with neutrons. On this basis, titanium beryllide, which has several advantages over metallic beryllium, is currently considered as a candidate material for neutron multiplication in a fusion reactor. Experimental data on the behavior of titanium beryllide under conditions of neutron irradiation are insufficient and, in general, all available data refer to titanium beryllide produced not on an industrial scale. The Ulba Metallurgical Plant (Kazakhstan) has developed and tested a technology for producing titanium beryllide on an industrial scale. This motivated us to begin studying the behavior of titanium beryllide produced at the Ulba Metallurgical Plant under conditions of long-time neutron irradiation in the WWR-K reactor.

The purpose of this work is to predict the temperature conditions during irradiation of titanium beryllide in the central channel of the WWR-K reactor. For this purpose, the COMSOL Multiphysics package was used, in which the finite-element analysis method was implemented. Thermophysical analysis of the irradiation experiment on the WWR-K reactor showed that the temperature of titanium beryllide samples will not exceed 83oC during irradiation in the considered position. The expected temperature gradient along the capsule will be no more than 20 °С, while the expected temperature gradient along the subcapsules will be less than 7 °С. Thus, the calculated temperature parameters fully correspond to the objectives of the reactor experiment, namely, long-time irradiation of titanium beryllide samples at temperatures ~ 80±15°С.

Библиографиялық сілтемелер

1. Francisco A. Hernández, et al., Fusion Eng. Des., 157, 111614 (2020).

2. K. Munakata, H. Kawamura, M. Uchida., J.Nucl. Mater., 329-333, 1357-1360 (2004).

3. K. Munakata, H. Kawamura, M. Uchida., Fusion Eng. Des., 75-79, 997-1002 (2004).

4. K. Munakata, H. Kawamura, M. Uchida., Fusion Eng. Des., 81, 993-998 (2006).

5. Yoshinao Mishima, et al., Fusion Eng. Des., 82.– P. 91-97 (2007).

6. Bachurin, D. V., Vladimirov P. V., j. Intermet, 100, 163–170 (2018).

7. K. Wada, et al., J. of Nucl. Mater., 442, 494-496 (2013).

8. Jae-Hwan Kim, Masaru Nakamichi, J. of Nucl. Mater., 438, 218-223 (2013).

9. P. Kurinskiy, et al., Fusion Eng. Des., 136, 49-52 (2018).

10. R. Gaisin, et al., J. of Nucl. Mater. Energy, 24, 100771 (2020).

11. R. Gaisin, et al., J. of Alloys and Compounds, 818, 152919 (2020).

12. P. Kurinskiy, et al., Fusion Eng. Des., 84, 1136-1139 (2009).

13. P. Kurinskiy, et al., Fusion Eng. Des., 98-99, 1817-1820 (2015).

14. R. Gaisin, et al., J. of Nucl. Mater. Energy, 30, 101128 (2022).

15. R. Gaisin, et al., Fusion Eng. Des., 161, 111862 (2020).

16. A. Shaimerdenov, et al., Proceedings of the International Scientific Forum “Nuclear Science and Technology” (26-30 September, 2022, Almaty, Kazakhstan, p.152).

17. A. Shaimerdenov, et al., Proceedings of the International Workshop “Beryllium Technology” (14-16 September, 2022, Karlsruhe, Germany, p.X).

18. A. Shaimerdenov, et al., Physics of Atomic Nuclei., 81, 1408–1411 (2018).

19. A. Shaimerdenov, et al., Fusion Science and Technology. 76, 304-313 (2020).

20. COMSOL Multiphysics, 2022. https://www.comsol.com/comsol-multiphysics (accessed 25 April 2022).

Жүктелулер

Жарияланды

2023-03-14

Шығарылым

Бөлім

Физика конденсированного состояния и проблемы материаловедения. Нанонаука