IR spectrometric studies of glass transition of freon CF3-CFH2
Keywords:
freon, glass transition, IR spectraAbstract
IR spectroscopic studies of structural-phase transformations in cryocondensed Freon films 134a were carried out. The investigations were carried out in the temperature range 16-100 K. Was discovered, that freon cryofilms 134a, formed at T = 16K, under heating in the temperature range from 70 to 90 K undergo multiple structural transformations of various nature. It is concluded that at a temperature of Tg = 72 K, a transition of the glassy state to a supercooled liquid (G-SCL) takes place. At a temperature near T = 78 K, crystallization of SCL into the state of an orientationally disordered plastic crystal begins. At a temperature Ttrans = 80 K, a second quasi-glass transition occurs from the state of the orientation glass to a plastic crystal with an ordered rotational subsystem. In the temperature range 83-85 K, a plastic crystal-monoclinic crystal phase transition is realized.
References
2. M.A. Satorre, M. Domingo, C. Millan, R. Luna, R. Vilaplana and C. Santonja, Planet. Space Sci. 56, 1748-1752, (2008) https://doi.org/10.1016/j.pss.2008.07.015
3. A. Perry Gerakines and L. Reggie Hudson, Astrophysical Journal Letters, 805, 2, L20, (2015) DOI: 0.1088/2041-8205/805/2/L20
4. A. Aldiyarov, A. Drobyshev, D. Sokolov and A. Shinbayeva, JLTP 187, 742 (2017)
5. R.L. Hudson, M.J. Loeffler and P.A. Gerakines, J. Chem. Phys. 146, 024304 (2017) https://doi.org/10.1063/1.4973548
6. J.J. Harrison, J. of Quantitative Spectroscopy & Radiative Transfer 151, 210-216 (2015). https://doi.org/10.1016/j.jqsrt.2014.09.023
7. T. Hama and N. Watanabe, Chem. Rev. 113, 8783 (2013)
8. G. Mulas, G.A. Baratta, M.E. Palumbo and G. Strazzulla, Astron. Astrophys. 333, 1025-1033 (1998)
9. Bohn R.B., Sandford S.A., Allamandola L.J. and Cruikshank D.P., Icarus 111, 151 (1994)
10. W. M. Grundy, B. Schmitt and E. Quirico, Icarus 155, 486-496 (2002). https://doi.org/10.1006/icar.2001.6726
11. A. Aldiyarov, M. Aryutkina, A. Drobyshev, and at al, Low. Temp. Phys. 37, 524 (2011). https://doi.org/10.1063/1.3622633
12. Y.Z. Chua, M. Tylinski, S. Tatsumi, M.D. Ediger and C. Schick, J. Phys. Chem. 144, 244503 (2016) https://doi.org/10.1063/1.4954665
13. W. Zhang, C.W. Brian, and L. Yu, J. Phys. Chem. B 119(15), 5071-5078 (2015). DOI: 10.1021/jp5127464
14. S.F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315(5810), 353 (2007). DOI: 10.1126/science.1135795
15. S.L.L. M. Ramos, A.K. Chigira, and M. Oguni, J. Phys. Chem. B 119(10), 4076-4083 (2015). DOI: 10.1021/jp5109174
16. A.D. Lopata and Durig, J.R.J. Raman Spectrosc. 6, 61 (1977)№ https://doi.org/10.1002/jrs.1250060203
17. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford Smalley. J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383
18. A. Drobyshev, A. Aldiyarov, A. Nurmukan, D. Sokolov and A. Shinbayeva, ФНТ 43 (5), (2018). (in press). (in Russ)
19. A. Aldiyarov, M. Aryutkina and A. Drobyshev, Low Temp. Phys. 37 (6), 524 (2011) https://doi.org/10.1063/1.3622633
20. A. Drobyshev, K. Abdykalykov and A. Aldiyarov, Low Temp. Phys. 33 (8), 699 (2007). https://doi.org/10.1063/1.2746844
21. M. Brunelli and A. N. FitchI, Z. Kristallogr. 217, 395 (2002). https://doi.org/10.1524/zkri.217.7.395.23638
22. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford, Smalley, J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383
23. A. Aldiyarov, M. Aryutkina, A. Drobyshev, M. Kaikanov, and V. Kurnosov, Low Temp. Phys. 35 (4), 251 (2009). https://doi.org/10.1063/1.3114588
24. M.D. Ediger, C.A. Angell and Sidney R. Nagel, J. Phys. Chem. 100, 13200-13212 (1996). DOI: 10.1021/jp953538d
25. V. Petrenko and R. Whitworth, Physics of Ice, (Oxford Univ. Press Inc., NY, 1999). DOI:10.1093/acprof:oso/9780198518945.001.0001