Study of structural properties of copper nanotubes modified with ionizing radiation
Keywords:
template synthesis, ion-track technology, electrochemical deposition, nanotubes, nanostructures, growth mechanisms, radiation defectsAbstract
In modern materials science, irradiation with electron beams and a γ ray flux of metallic nanostructures is an effective tool for stimulating a controlled modification of structural and conductive properties of materials. The paper presents the results of the influence of various types of irradiation on structural and conductive properties of copper nanotubes obtained by electrochemical synthesis in pores of template matrices based on polyethylene terephthalate. The modification of properties of synthesized Cu-nanotubes was carried out at ELV-4 linear accelerator (Kurchatov, Kazakhstan) by irradiating with electrons flux of 5 MeV energies and γ quanta with of 1.35 MeV energy, doses of 50-250 kGy in 50 kGy increments. SEM, XRD and EDS methods established that irradiation with an electron beam and γ rays with doses of 50 and 100 kGy allows us modifying the crystal structure of nanotubes, increasing their conductivity and decreasing their resistance without destroying their structure. An increase in the irradiation dose leads either to an insignificant change in conductive properties for high-energy electrons and γ quanta, or to a deterioration of conductive properties due to the appearance of oxide compounds in the crystal structure and subsequent destruction of samples.
References
2 Lu Wei, Nature materials 6.11, 841 (2007).
3 D. Natelson, Nature materials 5.11,853 (2006).
4 Lu Lian, Science 287.5457, 1463-1466 (2000).
5 J.A. Eastman, Applied physics letters 78.6, 718-720, (2001).
6 I. Lisiecki, Journal of the American Chemical Society 115.10, 3887-3896 (1993).
7 A. Filankembo, Physical Chemistry B 107.30, 7492-7500 (2003).
8 I. Lisiecki, Physical Review B 61.7, 4968 (2000).
9 A.T. Ngo, Colloids and Surfaces A: Physicochemical and Engineering Aspects 228.1-3, 107-117 (2003).
10 N. Pinna, Langmuir 17.26, 7982-7987 (2001).
11 C. Salzemann, Advanced Functional Materials 15.8, 1277-1284 (2005).
12 M.-Y. Yen, Advanced Materials 15.3, 235-237 (2003).
13 L. Zongwen, Advanced Materials 15.4, 303-305 (2003).
14 M.A. Reichenberger, Radiation Physics and Chemistry 130, 186-195 (2017).
15 A. Kaur, Radiation Effects and Defects in Solids 169.6, 513-521 (2014).
16 C.L. Smith, Radiation Measurements 106, 352-356 (2017).
17 Z. Yuan, Solar Energy Materials and Solar Cells 161, 247-254 (2017).
18 J.G. Wang, Microscopy and Microanalysis 10.S02, 358 (2004).
19 E.F. Deiss, Electrochimica acta 47.25, 3995-4010 (2002). PII: S0013 - 4686(02)00316-X
20 J.G. Wang, Nano letters 5.7, 1247-1253 (2005).
21 J.P. Heremans, Physical review letters 91.7, 076804 (2003).
22 E. Kaniukov, Philosophical Magazine 97.26, 2268-2283 (2017).
23 M. Zdorovets, Proc. 24th Russian Particle Accelerator Conf. 287-289, (2014). ISBN 978-3-95450-170-0
24 E. Yu. Kaniukov, Journal of Contemporary Physics (Armenian Academy of Sciences) 52.2, 155-160 (2017).
25 E.Yu. Kaniukov, IOP Conference Series: Materials Science and Engineering. 110.1, 012013 (2016).
26 W. Li, Nano Research 7.11, 1691-1698 (2014).
27 V. Tuboltsev, Small 5.23, 2687-2691 (2009).