Thermodynamic analysis of plasma gasification of agricultural waste

Authors

  • V.Е. Messerle Combustion problems Institute, Almaty, Kazakhstan; Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia Plasmatechnics R&D LLC, Institute of Experimental and Theoretical Physics Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • А.B. Ustimenko Plasmatechnics R&D LLC, Institute of Experimental and Theoretical Physics Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N.А. Slavinskaya Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Garching, Germany
  • Zh. Sitdikov Plasmatechnics R&D LLC, Institute of Experimental and Theoretical Physics Al-Farabi Kazakh National University, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/rcph-2019-i2-15
        238 66

Keywords:

agricultural waste, plasma processing, gasification, pyrolysis, synthesis gas, plasma gasifier

Abstract

Most of the agricultural waste (AW) comes from poultry farms and livestock farms mainly in the form of bird droppings and cattle dung. Irrational use of large volumes of such waste negatively affects the environment. Modern technologies allow utilizing agricultural waste to produce energy gas. Plasma recycling of waste from the agro-industrial complex allows intensifying the process of obtaining energy gas consisting mainly of synthesis gas (СО+Н2) and a 150–200-fold increase in the gas productivity of the plasma gasifier compared with biogas generators. This article is devoted to the thermodynamic modelling of AW plasma-processing. The thermodynamic analysis of the waste plasma processing was performed using the universal program of thermodynamic calculations TERRA. In the work under the AW means the excrement of farm animals (manure). For research, dried mixed manure (dung with 30% moisture content) from cattle is used. Thermodynamic calculations showed that during plasma gasification and pyrolysis of AW, high-calorie combustible gas is produced with a synthesis gas yield of 65.2 and 68.5%, respectively. No harmful components were detected. Plasma gasifier will allow to effectively process various types of AW into high calorific energy gas, consisting mainly of synthesis gas, and into neutral slag. The technological scheme of AW plasma processing has been developed. Using proposed plasma plant that implements this scheme, depending on the composition of the AW, up to 1.7 m3 of dry energy gas can be obtained from 1 kg of AW. At the same time, its caloric content will vary from 8500 to 300 MJ/Nm3. The composition of the energy gas will be following, vol.%: H2 - 35-39, CO - 29-31, CO2 - 4-6, N2 - 10-14, H2O - 13-18. Such gas can be used as a working medium of highly efficient electric generators of a new generation, including solid oxide fuel cells or as a raw material for the production of synthetic motor fuels (methanol, dimethylether)

References

1 A.V. Prohorov, S.I. Kopylov, V.V. Kopylov and E.A. Sychev, Nauchno-metodicheskiy elektronnyy zhurnal «Kontsept», 39, 1751–1755 (2017) (in Russ)

2 BP Statistical Review of World Energy 2017, 66, 50 (2017).

3 Key World Energy Statistics 2017: International Energy Agency. OECD/IEA, 95 (2017).

4 V.G. Rodionov, Energetika: problemy nastoyashchego i vozmozhnosti budushchego, (Moscow: EHNAS 2010) 352 p. (in Russ)

5 Obezvrezhivanie othodov termicheskim sposobom (Szhiganie othodov), Informacionno-tekhnicheskij spravochnik po nailuchshim dostupnym tekhnologiyam, (ITS 9-2015, Moscow: NTD, 2015) 249 p. (in Russ)

6 W. Baader, E. Dohne and M. Brenndörfer, Biogas in Theorie und Praxis, (Frankfurt: KTBL-Schrift 229, 1978), 134 p.

7 USDA, U.S. EPA, U.S. DOE, Biogas Opportunities Roadmap, (August 2014), 28 p.

8 Special'noe agentstvo vozobnovlyaemyh resursov (FNR). Biogaz na osnove vozobnovlyaemogo syr'ya. – (Germaniya: Izdanie 1, 2010), 115 p. (in Russ)

9 N. Cerone and F. Zimbardi, Energies, 11, 1280-1298.(2018).

10 M.I. Jahirul, M.G. Rasul, A.A. Chowdhury and N. Ashwath, Energies, 5, 4952-5001 (2012).

11 G.I. Bagryancev and V.E. Chernikov, Termicheskoe obezvrezhivanie i pererabotka promyshlennyh i bytovyh othodov, Municipal'nye i promyshlennye othody: sposoby obezvrezhivaniya i vtorichnoj pererabotki: Analit. obzor (Novosibirsk, 1995) 156 p. (in Russ)

12 V.M. Bel'kov, Himicheskaya promyshlennost', 8-25 (2000) (in Russ)

13 V.E. Lotosh, Ehkologicheskie sistemy i pribory, 2, 29-31 (2003) (in Russ)

14 V.E. Lotosh, Pererabotka othodov prirodopol'zovaniya,(Ekaterinburg: POLIGRAFIST, 2007) 503 p. (in Russ)

15 V.E. Messerle, A.L. Mosse, A.N. Nikonchuk, S.Zh. Tokmoldin and A.B. Ustimenko, Rec. Contr to Phys. 53, 27-34 (2015) (in Russ)

16 S.V. Anahov and Yu.A. Pykin, Sistemnye principy v reshenii zadach ehkologicheskoj bezopasnosti s primeneniem ehlektroplazmennyh tekhnologij Conf. ISWA (Moscow, 28-29 May, 2013), p. 4-9 (in Russ)

17 A.G. Karengin, Plazmennye processy i tekhnologii., (Tomsk: Izdatel’stvo TPU, 2009), 144 p. (in Russ)

18 V.E. Messerle, A.B. Ustimenko, and O.A. Lavrichshev, Fuel, 164, 172-179 (2016).

19 Y. Pang, L. Bahr, et al, Energies, 11, 1302-1326 (2018).

20 Galvita V., Messerle V.E., et al, Intern. J of Hydrogen Energy, 32, 3899-3906 (2007).

21 Katsaros G., Nguyen T.-V. and Rokni M., J of Sustainable Development of Energy, Water and Environment Systems, 6, 13-32 (2018).

22 V.I. Golish, E.I., Karpenko et al, High Energy Chemistry, 43, 318–323 (2009).

23 V.E. Messerle, A.L. Mosse, A.B. Ustimenko, Waste Management, 79, 791–799 (2018).

24 Spravochnik organicheskih udobrenij. http://навозоразбрасыватели.рф (in Russ)

25 V.A., Vasil'ev and N.V. Filippova Spravochnik po organicheskim udobreniyam., (izdanie 2-e . pererab. i dop., M.: Rosagropromizdat, 1988), 255 p. (in Russ)

26 M. Gorokhovski, E.I. Karpenko, et al, J of the Energy Institute, 78, 157-171 (2005).

Downloads

Published

2019-06-25

Issue

Section

Thermal Physics and Theoretical Thermal Engineering