Modeling and calculation of thermal and photophysical characteristics of high-performance silicon solar cells

Authors

  • N.A. Chuchvaga Scientific production center of agricultural engineering, Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • K.P. Aimaganbetov Scientific production center of agricultural engineering, Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • N.S. Tokmoldin Scientific production center of agricultural engineering, Satbayev University, Institute of Physics and Technology, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • S.Zh. Tokmoldin Scientific production center of agricultural engineering, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/RCPh-2019-i3-7
        105 45

Keywords:

photovoltaics, crystalline silicon, bifacial solar cell, mathematical physics

Abstract

In order to study and compare the physical characteristics of high-performance silicon solar cells with mono- and bifacial generation of carriers, calculations were made of the temperature field distribution and light propagation in cells having a standard architecture of heterostructure silicon solar cell based on the "amorphous silicon-crystalline silicon" junction, also known as HIT. It has been shown that in comparison with a monofacial solar cell, a bifacial cell is less susceptible to heating. At the same time, the amount of light penetrating into the bifacial solar cell exceeds the amount of light penetrating into the monofacial cell, due to the presence of albedo at the level of 17%. The possibility of photovoltaic conversion of albedo radiation plays an important role in increasing the total power generation in bifacial solar cells and demonstrates their significant advantage over monofacial photovoltaic converters.

References

1 M. Reed, Methods of modern mathematical physics, (New York : Academic press, 1972), vol.1.

2 A.B. Vasileva, N.A. Tikhonov, Integralnye uravneniya, (Sankt-Peterburg: Lan', 2009). (in Russ).

3 A.V. Omelchenko, Metody integralnyh preobrazovaniy v zadchah matematicheskoy fiziki, (Moscow, MCNMO, 2010), 181 p. (in Russ).

4 G.C. Rota (ed.), Encyclopedia of Mathematics and its Applications, (Addison-Wesley, 1976).

5 J. Crank, P. A. Nicolson, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 43 (1), 50-67 (1947).

6 A. Einstein, Annalen der physik, 322 (8), 549-560 (1905).

7 P. Wilmott, The mathematics of financial derivatives: a student introduction, (Cambridge university press, 1995).

8 R.K.M. Thambynayagam, The diffusion handbook: applied solutions for engineers, (McGraw Hill Professional, 2011).

9 N.S. Tokmoldin, N.A. Chuchvaga, Technical Physics, 62 (12), 1877-1881 (2017).

10 N.A. Chuchvaga, Journal of Physics: Conference Series, IOP Publishing, 993 (1), 012039 (2018).

11 R.A. Street Hydrogenated amorphous silicon, (Cambridge university press, 2005).

12 R. Swanepoel, Journal of Physics E: Scientific Instruments, 16 (12), 1214 (1983).

13 D.E. Carlson, C.R. Wronski, Applied Physics Letters, 28 (11), 671-673 (1976).

14 W.E. Spear, P.G. Le Comber, Solid state communications, 17 (9), 1193-1196 (1975).

15 M.H. Brodsky, M. Cardona, J.J. Cuomo, Physical Review, 16 (8), 3556 (1977).

16 J. Lofberg, IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), 284-289 (2004).

17 J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, 3 (2004).

18 R. Stangl, M. Kriegel, M. Schmidt, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, IEEE, 2, 1350-1353 (2006).

19 D.A. Kiryanova, A.K. Bondarenko, and K.N. Afonina, Analiz spectr poglasheniya gibridnykh nanokompozitnykh
materialov na osnove nanochastic serebra v matrice polivinilovogo spirta, Nauchnoe soobshestva studentov XXI stoletiya, Estestvennye nauki, 7(32). URL: http://sibac.info/archive/nature/7(32).pdf (data obrasheniya: 18.04.2019). (in Russ).

20 U. Kreibig, L. Genzel, Surface Science, 156, 678-700 (1985).

21 R.H. Doremus, The Journal of Chemical Physics, 42 (1), 414-417 (1965).

22 H. Ehrenreich, H. R. Philipp, B. Segall, Physical Review, 132 (5), 1918 (1963).

23 E.T. Arakawa, M.W. Williams, Journal of Physics and Chemistry of Solids, 29 (5), 735-744 (1968).

24 A.Ya. Dzhumaev, Analiz vliyaniya temperatury na rabochiy rezhim photoelektricheskoi solnechnoi stancii, Tekhnicheskienauki ot teorii k praktike, 46, 33-40 (2015). (in Russ).

Downloads

How to Cite

Chuchvaga, N., Aimaganbetov, K., Tokmoldin, N., & Tokmoldin, S. (2019). Modeling and calculation of thermal and photophysical characteristics of high-performance silicon solar cells. Recent Contributions to Physics (Rec.Contr.Phys.), 70(3), 55–62. https://doi.org/10.26577/RCPh-2019-i3-7

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)