Features in distributions of secondary particles in interactions of nuclei

Authors

  • A.I. Fedosimova The Institute of Nuclear Physics, Al-Farabi Kazakh National University, Almaty, Kazakhstan http://orcid.org/0000-0001-9607-6074
  • M.E. Abishev Al-Farabi Kazakh National University, Kazakstan, Almaty http://orcid.org/0000-0003-3602-6934
  • T.A. Kozhamkulov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • I.A. Lebedev Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan http://orcid.org/0000-0002-7562-9925

DOI:

https://doi.org/10.26577/RCPh-2019-i4-2

Keywords:

emulsion technique, Nucleus-nucleus interactions, quark-gluon plasma

Abstract

The paper presents the results of an analysis of the interactions of heavy lead nuclei 208Pb at energy of 158 AGeV and gold nuclei 197Au at energy of 10.7 AGeV with photoemulsion nuclei Em. The results were processed using the Hurst method. The total ensemble of events has been divided into two classes dependending on the Hurst index h, which are called events of explosive and cascade-evaporation types. In explosive events, interactions have been discovered in which secondary particles are emitted at large angles. The analysis of this effect depending on the energy of the projectile nucleus is presented. Gold and lead nuclei have approximately the same mass, but they differ in energy by almost 15 times. However, the relative number of explosive events is almost the same. In the Au + Em interactions 64.7% of explosive events are observed. Moreover, 8.1% of the interactions are events of complete destruction which have no fragments of the target nucleus.  There are 59.7% of explosive type events and 8.9% of complete destruction events in Pb + Em interactions. However, the number of events with large values ​​of the mean pseudorapidity distribution <h> differs significantly. In Au + Em interactions, 35.6% of the events are explosive events with large <h> values. There are only 8.4% of such events in Pb + Em.

Author Biographies

M.E. Abishev, Al-Farabi Kazakh National University, Kazakstan, Almaty

Место работы КазНУ им.аль-Фараби

Должность Заведующий кафедрой

Ученая степень, звание доктор физико-математических наук

Служебный адрес пр. аль-Фараби, 71

T.A. Kozhamkulov, Al-Farabi Kazakh National University, Kazakstan, Almaty

Место работы КазНУ им.аль-Фараби

Должность Заведующий кафедрой

Ученая степень, звание доктор физико-математических наук

Служебный адрес пр. аль-Фараби, 71

I.A. Lebedev, Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan

Место работы Физико-технический институт

Должность Заведующий лабораторией

Служебный адрес мкр. Алалтау, Ибрагимова 11

Ученая степень, звание доктор физико-математических наук

References

1 D.J Kim for the ALICE Collaboration News on collectivity in Pb-Pb collisions from the ALICE experiment, EPJ Web of Conf, 141, 01001 (2017).

2 S. Esumi, EPJ Web of Conf, 141, 05001 (2017).

3 H. Song, Y. Zhou and K. Gajdosova, Nucl. Sci. and Tech., Iss.7, 28:99 (2017).

4 R. Pasechnik and M. Sumbera, Universe, 3(1), 7, 1-61 (2017).

5 S. Plumari, G. L. Guardo, F. Scardina and V. Greco, Phys. Rev. C, 92 (5), 054902 (2015).

6 J.C. Collins and M.J. Perry, Phys. Rev. Lett., 1353, 34 (1975).

7 N. Cabibbo and G. Parisi, Phys. Lett. B 59, 67–69 (1975).

8 H.R. Schmidt and J. Schukraft, J.Phys. G, 19, 1705–1795 (1993).

9 U.W. Heinz and M. Jacob, Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Program, (Theoretical Physics Division: Geneva, Switzerland, 2000).

10 I. Arsene, I.G. Bearden, D. Beavis, C. Besliu, B. Budick, H. Bøggild, C. Chasman, C.H. Christensen, P. Christiansen and J. Cibor et al, Nucl. Phys. A, 757, 1-27 (2005).

11 B.B. Back, M.D. Baker, M. Ballintijn, D.S. Barton, B. Becker, R.R. Betts, A.A. Bickley, R. Bindel, A. Budzanowski and W. Busza et al, Nucl. Phys. A, 757, 28–101 (2005).

12 J. Adams, M.M. Aggarwal, Z. Ahammed, J. Amonett, B.D. Anderson, D. Arkhipkin, G.S. Averichev, S.K. Badyal, Y. Bai and J. Balewski et al, Nucl. Phys. A, 757, 102–183 (2005).

13 K. Adcox, S.S. Adler, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, R. Amirikas and K. Aoki et al, Nucl. Phys. A, 757, 184–283 (2005).

14 E. Shuryak, Reviews of Mod. Phys., 89, 03500, (2017).

15 R. Nouicer, Eur.Phys. J Plus, 3, 131:70 (2016).

16 P. Braun-Munzinger, V. Koch, T. Schäfer and J. Stachel, Phys. Reports, 621, 76-126 (2016).

17 S. Mohapatra, Nucl.Phys. A 956, 59-66 (2016).

18 J.Y. Ollitrault, Phys. Rev. D 46, 229–245 (1992).

19 S. Voloshin and Y. Zhang, Z. Phys. C 70, 665–672 (1996).

20 R. Snellings, New J. Phys., 13, 055008 (2011).

21 U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci., 63, 123–151 (2013).

22 T. K. Gaisser, T. Stanev and S. Tilav, Astro-ph.HE1303.3565, 1, 1-11 (2013).

23 S. Bhattacharyya and M. Haiduc et. al, Eur. Phys. J. Plus, 132(5), 229 (2017).

24 M.H. Rasool and S. Ahmad Chin, J. Phys., 55(2), 260-267 (2017).

25 T. Tatsuhiro Naka, Radiation Measurements, 95, 31-36 (2016).

26 S. Bhattacharyya and M. Haiduc et. al, Can. J. Phys., 94(9), 884-893 (2016).

27 Z. Zhang and T.L. Ma, Physics Procedia, 80, 50-53 (2015).

28 Z. Zhang et al, Physics Procedia, 80, 50-53 (2015).

29 R. Xu and D.H. Zhang Chin, J. Phys, 54(5), 724-733 (2016).

30 S.B. Shaulov et al, Rec.Contr.Phys, 2(69), 61-70 (2019).

31 N. Ahmad, Journal of Modern Physics, A 9, 1029-1036 (2018).

32 T. Asia et.al, High Energy Density Physics, 32, 44-50 (2019).

33 M.I. Adamovich et al, Eur. Phys., J., 5, 429-440 (1999).

34 M.I. Adamovich et al, Eur. Phys., J., 6, 421-425 (1999).

35 I.A. Lebedev and B.G. Shaikhatdenov, J.Phys. Nucl.Part.Phys., 23, 637 (1997).

Downloads

Published

2019-12-20

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics