Modern advances in obtaining of carbon quantum dots, characterizing their properties and biomedical application: a review

Authors

DOI:

https://doi.org/10.26577/RCPh.2021.v79.i4.08
        279 199

Keywords:

nanomaterials, carbon, carbon quantum dots, fluorescence, biomedicine

Abstract

Carbon quantum dots have attracted great interest in recent years due to their unique physical and chemical properties. The certain property that distinguishes carbon quantum dots from other priority nanomaterials is their visible photoluminescence at room temperature. It is known that the photoluminescence of the material mainly depends on its nanoscale structure and the shape of nanoparticles. Currently, due to the fact that these nanoparticles not only brightly luminescent, but are also biocompatible with living organisms, biodegradable and low toxic, they are widely used in bioimaging and biomedicine as a biosensor and material for drug delivery into the body.

In this short review, we describe the latest advances in synthesis, comprehensive research, and biomedical applications of bright photoluminescent carbon quantum dots. The article briefly describes the nature and main types of carbon nanomaterials, and discusses the advantages and disadvantages of common methods for the synthesis of carbon quantum dots. In addition, attention is paid to describing the physical properties of carbon quantum dots proposed for use in biomedicine and methods of their investigation, and the future development of such applications in the field of health care is assessed.

References

1. G.N. Hounsfield, Nobel lectures in physiology or medicine, 568–586 (1992).

2. J. Bamber, et al. Physics of visualization of images in medicine, (Moscow, Mir, 1991), 2 (7), рр.5-104.

3. J.P. Hornak, Rochester Institute of Technology. 1-2 (1996-1999).

4. L.D. Lindenbraten, Methods of x-ray examination of human organs and systems, (Tashkent: MEDICINE, 1976), 417 р.

5. T.A. Zdobnova et al, Institute of Bioorganic Chemistry, Russian Academy of Sciences academicians M.M. Shemyakin and Yu.A. Ovchinnikov Russian Academy of Sciences, 29-47 (2011). (in Russ).

6. V.F. Borodkin, Chemistry of dyes, (Moscow, Chemistry, 1981), 248 р. (in Russ).

7. D.I. Mendeleev, A.P. Lidov, Organic natural paints, (Encyclopedic Dictionary of Brockhaus and Efron, 1890-1907).

8. D.I. Mendeleev, A.P. Lidov, Mineral paints, (Encyclopedic Dictionary of Brockhaus and Efron, 1890-1907).

9. R.B. Vasiliev, D.N. Dirin, Quantum dots: synthesis, properties, application, Methodical materials, (Moscow, M.V. Lomonosov MSU, FNM, 2007), 34 p. (in Russ).

10. B.M. Maune et al, Nature, 481, 344-347 (2012).

11. A.B. Bourlinos et al, Small, 4, 455-458 (2008).

12. A.S. Trifonov et al, Radiotechnics, 35-40 (2013).

13. I.L. Knunyants et al, Chemical encyclopedia, (Moscow, Soviet encyclopedia, 1990), 671 р. (in Russ).

14. D.N. Dirin et al, Journal of Optical Technology, 693-698 (2011).

15. V.I. Berezkin, Carbon: closed nanoparticles, macrostructures, materials, (St. Petersburg: ARTEGO, 2013), 450 р. (in Russ).

16. C.J.H. Wort, R.S. Balmer, Materials Today. 11, 22-28 (2008).

17. K.S. Novoselov, et al, PNAS. 102, 10451-10453 (2005).

18. R.V. Lobzova, Graphite, 3rd ed, (Moscow, Great Soviet Encyclopedia, 1969-1978). (in Russ).

19. Y.P. Kudryavtsev, The discovery of carbyne, (Dorfrecht, Kluwer Academic publishers, 1999) 40 р.

20. J.V. Travis, Y.M. Gupta, Physical Review B, 103 (10) (2021).

21. V.V. Danilenko, Physics of Solids, 46, 581-584 (2004).

22. A. Hirsch, M. Brettreich, Fullerenes: chemistry and reactions, (WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005), 423 р.

23. I.V. Zolotukhin, Soros educational journal, 51-56 (1996).

24. S. Simamura, Carbon fiber, (Moscow, Mir, 1987), 304 p. (in Russ).

25. P.N. Dyachkov, Carbon nanotubes: structure, properties, applications (Moscow, Binom, 2006), 293 p.

26. M. Molina-Sabio, et al, Carbon. 34, 505–509 (1996).

27. S.P. Vukolov, D.I. Mendeleev, Encyclopedic Dictionary of Brockhaus and Efron. (1890-1907).

28. R. Loison, et al, Cox, (Moscow, Metallurgy, 1975), 520 p. (in Russ).

29. C.J.H. Wort, R.S. Balmer, Materials Today, 11, 22-28 (2008).

30. J.E. Hove, Industrial Carbons and Graphites, 501-507 (1958).

31. F. William, The composition of the earth (Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, 2000).

32. H.W. Kroto, et al, Nature. 318, 162-163 (1985).

33. A. Evans, et al, Monthly Notices of the Royal Astronomical Society: Letters, 421, 92-96 (2012).

34. A.V. Eletskii, B.M. Smirnov, Advances in physical sciences, 165, 977-1009 (1995).

35. K.S. Novoselov, et al, Nature, 438, 197-200 (2005).

36. G. Zhou, et al, ACS Nano, 7, 5367-5375 (2013).

37. P. Vasili, et al, Nature Photonics, 2, 341–350 (2008).

38. H. Alexander, et al, Physical Review Letters. 100 (2008).

39. X. Xu et al, Chemical Communications, 126, 12736-12737 (2004).

40. S.N. Baker and G.A. Baker, Angewandte Chemie International Edition, 49, 6726-6744 (2010).

41. B. Zhu, et al. Materials of Chemistry C, 1, 580-586 (2013)..

42. S. Anwar, et al, ACS Applied Bio Materials, 2, 2317-2338 (2019).

43. X. Li, et al, Chemical Communications, 47, 932-934 (2011).

44. S.-L. Hu, et al, Materials Chemistry, 19, 484-488 (2009).

45. Y. Liu, et al, Carbon. 68, 258-264 (2014).

46. X. Zhai, et al, Chemical Communications. 48, 7955-7957 (2012).

47. S. Sahu, et al, Chemical Communications. 48, 8835-8837 (2012).

48. Y. Yang, et al, Chemical Communications, 48, 380-382 (2012).

49. S.K. Bhunia, et al, Scientific Reports, 3, 1473 (2013).

50. H. Ming, et al, Dalton transactions, 41, 9526-9531 (2012).

51. H. Li, et al, Angewandte Chemie International Edition, 49, 4430-4434 (2010).

52. J. Deng, et al, Chemistry–A European Journal, 20, 4993-4999 (2014).

53. S.K. Das, et al, Nano letters, 14, 620-625 (2014).

54. Y. Deng, et al, Chemical Communications, 49, 5751-5753 (2013).

55. Z. Lin, et al, Chemical Communications, 48, 1051-1053 (2012).

56. X. Dou, et al, Chemical Communications, 49, 5871-5873 (2013).

57. S.C. Ray, et al, Physical Chemistry Communications, 113, 18546-18551 (2009).

58. H. Tao, et al, Small, 8, 281-290 (2012).

59. J. Shangguan, et al, Analytical Chemistry, 88, 7837-7843 (2016).

60. N. Wang, et al, Biosensors and Bioelectronics, 85, 68-75 (2016).

61. M. Zheng, et al, Advanced Materials, 26, 3554-3560 (2014).

62. J. Kim, et al, Biomaterials, 34, 7168-7180 (2013).

63. S. Pandey, et al, Materials Chemistry, 4972-4982 (2013).

Downloads

How to Cite

Zhylkybayeva, N., Mussabek, G., Baktygerey, S., Sadikov, G., Lysenko, V., & Lisnyak, V. (2021). Modern advances in obtaining of carbon quantum dots, characterizing their properties and biomedical application: a review. Recent Contributions to Physics (Rec.Contr.Phys.), 79(4), 55–71. https://doi.org/10.26577/RCPh.2021.v79.i4.08

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience