Investigation of (p,xd) reaction on 120Sn nucleus at proton energy of 30 MeV
DOI:
https://doi.org/10.26577/RCPh.2021.v79.i4.04Keywords:
cyclotron, nuclear reactions, inclusive cross-sections of reactions, pre-equilibrium decay, compound nucleus, exciton modelAbstract
For the first time, the double-differential and integral cross-sections of the reaction (p,xd) on the 120Sn nucleus were measured at the energy of the bombarding protons of 30 MeV. Tin is the structural material of the nuclear power plants being designed, in particular, the promising ADS (Accelerator Driven System) hybrid electro-nuclear installations consisting of a high-energy proton accelerator and a deeply subcritical nuclear reactor. The main idea is to use high-energy charged particle accelerators to produce neutrons in heavy element targets. For registration and identification of reaction products, the dE-E method was used, where two parameters of the detected particle are registered: specific ionization and total energy. The total error of the measured double-differential cross sections did not exceed 20%. After integrating the double-differential cross sections by angle, the integral energy spectrum was determined. The theoretical analysis is carried out within the framework of the TALYS calculation code, which is based on modern theoretical models of nuclear decay. The mechanisms of nuclear reactions responsible for the formation of the energy spectrum of outgoing deuterons are determined. The obtained experimental results fill in the missing values of the cross-sections of the studied reactions and can be used in the development of new approaches to the theory of nuclear reactions, as well as in the design of hybrid nuclear power plants.
References
2 S.A. Bznuni, V.S. Barashenkov, V.M.Zhamkochyan, А.N. Sosnin, А. Polanski, and А.G. Khudaverdyan, PEPAN 34, 976-1032 (2003) (in Russ).
3 C.D. Bowman, E.D. Arthur, P.W. Lisowski, G.P. Lawrence, R.J. Jensen, J.L. Anderson, B. Blind, M. Cappiello, J.W. Davidson, T.R. England, L.N. Engel, R.C. Haight, et al, NIM A320, 336–367 (1992).
4 A.V. Ignatyuk, M.N. Nikolaev, and V.I. Fursov, Atomic Energy 116, 209-216 (2014) (in Russ).
5 Y. Ikeda, Journal of Nuclear Science and Technology Suppl. 2, 13–18 (2002).
6 A.J. Koning, and M.C. Duijvestijn, Nucl. Phys A744, 15–76 (2004).
7 C. Kalbach, Phys. Rev., C71, 034606 (2005).
8 P.E. Hodgson, and E. Betak, Phys. Rep. 374, 1–89 (2003).
9 A. Guertin, N. Marie, S. Auduc, V. Blideanu, Th. Delbar, et al, Eur. Phys. Journal A23, 49–60 (2005).
10 G. Ussabayeva, T.K. Zholdybayev, B.M. Sadykov, B.A. Duisebayev, M. Nassurlla, Vestnik KazNU, ser. fiz. 2 (65), 34-41 (2018) (in Russ).
11 T.K. Zholdybayev, B.A. Duisebayev, B.M. Sadykov, M. Nassurlla, G. Ussabayeva, K.M. Ismailov, Acta Physica Polonica B49, 693–698 (2018).
12 T.K. Zholdybayev, B.M. Sadykov, M. Nassurlla, G. Ussabayeva, B.A. Duisebayev, K.M. Ismailov, V.V. Dyachkov, and N. O. Saduyev, Bulletin of RAS: Physics, 83, 1180–1183 (2019).
13 Y. Yamaguchi, T. Sanami, Y. Koba., Y. Uozumi, NIM A953, 163158 (2020).
14 Y. Mukhamejanov, G. Alieva, D. Alimov, G.D. Kabdrakhimova, M. Nassurlla, N. Saduyev, B.M. Sadykov, T.K. Zholdybayev, K.M. Ismailov, Y. Kucuk, Acta Physica Polonica B51, 783–788 (2020).
15 N. Otuka, E. Dupont, V. Semkova, et al, Nucl. Data Sheets 120, 272 (2014).
16 Y. Han, H. Guo, Y. Xu, Zh. Zhang, et al, EPJ Web of Conference 146, 09033 (2017).
17 I. Sarpun, A. Aydin, E. Tel, EPJ Web of Conference 146, 09026 (2017).
18 А.А. Arzumanov, L.М. Nemenov, О.I. Anisimov et al, Izv. KazSSR ser. fiz. and matem. 4, 6–15 (1973) (in Russ).
19 А.D. Duisebayev, G.N. Ivanov, and S.N. Rybin, Izv. KazSSR ser. fiz. and matem. 2, 80–81 (1983) (in Russ).
20 A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1–55 (2019).
21 J.J. Griffin, Phys., Rev. Lett. 17, 478-481 (1966).
22 C. Kalbach, Phys. Rev. C33, 818–833 (1986).
23 F. C. Williams Nucl. Phys. A166, 231–240 (1971).
24 F. C. Williams, Phys. Lett. B31, 184–186 (1970).
25 C. Kalbach, Phys.Rev C23, 124–135 (1981).