Research of the temperature dynamics change of a universal cryogenic surface using the finite element method

Authors

DOI:

https://doi.org/10.26577/RCPh.2022.v80.i1.08
        160 90

Keywords:

cryogenic lines, cryo-liquids, finite element method, temperature distribution, thermal conductivity, cryogenic cooling

Abstract

This paper presents a study of the temperature distribution on a universal cryogenic surface when it is cooled to nitrogen temperatures. Using computer simulation methods, in particular the finite element method, it was possible to determine the temperature-time dependences that occur during the cooling of a surface using the heat exchange tubes of different diameters located inside the surface at equal distances from each other. By varying the diameter of the heat exchange tubes, its effect on the cooling intensity was revealed when examining the volumetric temperature distribution: a larger diameter of the heat exchange tube yields a more uniform cooling of the surface. Besides, a larger orifice diameter leads to reaching thermal equilibrium quicker over the entire surface examined. By using a 7 mm orifice diameter, thermal equilibrium was reached 70 seconds after the start of cooling while 5 mm and 3 mm orifice diameters reached temperature equilibrium after 90 and 100 seconds respectively. The results obtained will make it possible to produce cooling of higher quality when designing universal cryogenic surfaces by using heat exchange tubes with certain geometric parameters.

References

1 B. Wang et al., Biotechnology advances 32, 583-595 (2014).

2 E. E. Benson, Critical reviews in Plant sciences 27, 141-219 (2008).

3 M. V. Zagarola, K. J. Cragin and J. A. McCormick, Cryogenics 111, 103172 (2020).

4 D. Popov et al., Applied Thermal Engineering 153, 275-290 (2019).

5 H. Vaghela, V. J. Lakhera and B. Sarkar, Heliyon 7, e06053 (2021).

6 Z. Jiang et al., Construction and Building Materials 257, 119456 (2020).

7 L. Li and M.Yan, Journal of Alloys and Compounds 823, 153810 (2020).

8 A. Bergant, A. R. Simpson and A. S. Tijsselingm, Journal of fluids and structures 22, 135-171 (2006).

9 A. Bergant et al., Journal of Hydraulic Research 46, 382-391 (2008).

10 G. Agrawal, S. Sunil Kumar and D. K. Agarwal, Journal of Thermal Science and Engineering Applications 8, (2016).

11 K. Yuan et al., Journal of Low Temperature Physics 150, 101-122 (2008).

12 M. He et al., Progress in Nuclear Energy 141, 103952 (2021).

13 G. Guggilla et al., Journal of Heat Transfer 143, 061602 (2021).

14 B. Franz, A. Sielaff and P. Stephan, Microgravity Science and Technology 33, 1-16 (2021).

15 A. V. Dedov et al., Heat Transfer Engineering, 1-13 (2021).

16 H. Karademir et al., Journal of Thermal Engineering 7, 483-549 (2021).

17 A. Manera et al., International journal of multiphase flow 32, 996-1016 (2006).

18 K. Yuan, Y. Ji and J. N. Chung, International journal of heat and mass transfer 50, 4011-4022 (2007).

19 H. Hu, J. N. Chung and S. H. Amber, Cryogenics 52, 268-277 (2012).

20 J. Johnson and S. R. Shine, Cryogenics 71, 7-17 (2015).

21 S. R. Darr et al., 53rd aiaa aerospace sciences meeting, 0468 (2015).

22 S. R. Darr et al., International Journal of Heat and Mass Transfer 103, 1243-1260 (2016).

23 S. R. Darr et al., International Journal of Heat and Mass Transfer 103, 1225-1242 (2016).

24 F. Moukalled and M. Darwish, Journal of Computational Physics 168, 101-130 (2001).

25 C. M. Xisto et al., International Journal for Numerical Methods in Fluids 70, 961-976 (2012).

26 L. Yu, S. Diasinos and B. Thornber, Computers & Fluids 214, 104748 (2021).

27 T. H. Shih et al., Computers & fluids 24, 227-238 (1995).

28 M. F. El-Amin et al., Heat and mass transfer 46, 943-960 (2010).

29 J. H. Lu, H. Y. Lei and C. S. Dai, International Journal of Heat and Mass Transfer 114, 268-276 (2017).

30 J. Yang et al., International Journal of Heat and Mass Transfer 134, 586-599 (2019).

31 S. Darr et al., npj Microgravity 2, 1-9 (2016).

Downloads

How to Cite

Hodzhaeva, M., Golikov О., Sokolov, D., & Yerezhep, D. (2022). Research of the temperature dynamics change of a universal cryogenic surface using the finite element method. Recent Contributions to Physics (Rec.Contr.Phys.), 80(1), 66–74. https://doi.org/10.26577/RCPh.2022.v80.i1.08

Issue

Section

Thermal Physics and Theoretical Thermal Engineering