STUDY OF GLASSY STATES OF CRYOCONDENSATES OF ORGANIC MOLECULES

Authors

  • U.P. Suiinzhanova Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • A.U. Aldiyarov Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • K.L. Beisenov Al-Farabi Kazakh National University, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/RCPh.2022.v83.i4.05
        46 33

Abstract

Cryovacuum gas condensates, especially those prone to the formation of glassy states with their subsequent transformations, are ideal objects for studying the processes occurring in disordered amorphous solid-state systems. The fact that it is possible to precisely control the conditions of cryo-deposition, such as the condensation temperature and the rate of cryo-film formation, makes it possible to establish an unambiguous correlation between the properties of cryo-condensates and the specified conditions for their formation. Ultrastable glasses (predominantly from the vapor phase under optimal deposition conditions) are a unique class of materials with low enthalpies and high kinetic stability. These highly stable and dense glasses have unique physicochemical properties, such as high thermal stability, improved mechanical properties, or anomalous supercooled transitions. At T=70 K, the transition from the amorphous glassy state (GS) to the liquid-solid cooled phase (SCL) occurs, after which its crystallization in the temperature range of 75-78 K passes into the plastic crystalline state (PC)-a cubic volume-centered structure with a directionally unregulated rotating subsystem. At T = 78-80 K, the transformation of the plastic crystal into a monoclinic crystal (MC) begins, which ends at T = 83 K.

References

1. Swallen S.F. Organic glasses with exceptional thermodynamic and kinetic stability / S.F.Swallen, K.L. Kearns, M.K. Mapes // Science. – 2007. –Vol. 315. – P. 353–356.
2. Gonzalez L. Density functional theory study on ethanol dimers and cyclic ethanol trimers / L. Gonzalez, O. Mo, M. Yanez // The Journal of Chemical Physics - 2019. – Vol. 111. - P. 3855.
3. Ediger M.D. Anisotropic vapor-deposited glasses: hybrid organic solids. / M.D.Ediger ,J. De Pablo, L. Yu // Acc. Chem. Res. – 2019. –Vol 52. –P. 407–414.
4. Ediger M.D. Perspective:highly stable vapor – deposited glasses / M.D.Ediger , // J.Chem.Phys. – 2017. –Vol. 147. 210901.
5. Bagchi K. Controlling structure and properties of vapor-deposited glasses of organic semiconductors: recent advances and challenges / K.Bagchi, M.D. Ediger // J. Phys. Chem. Lett.- 2020. -Vol.11.-P. 6935–6945.
6. Cavagna A. Supercooled liquids for pedestrians / A.Cavagna // Phys. Rep.-2009. - Vol.476. -P. 51–124.
7. Maxwell J.C. IV. On the dynamical theory of gases / J.C.Maxwell // Philos Trans R Soc London.- 2009.-Vol.157.- P. 49–88.
8 Badrinarayanan P. The glass transition temperature versus the fictive temperature / P. Badrinarayanan, W. Zheng, Q. Li, S.L. Simon // J Non Cryst Solids. -2007.-Vol. 353. – P. 2603–2612.
9. Mauro N.A. A structural signature of liquid fragility / N.A.Mauro, M.Blodgett, M.L.Johnsonetal // Nat.Commun.-2014. – Vol. 5. – P. 4616.
10. Comez L. Progress in liquid and glass physics by Brillouin scattering spectroscopy / L.Comez, C.Masciovecchio, G.Monaco, D.Fioretto // Solid State Physics. ed. by S. Sps. – 2012.-P. 1-77.
11. Yokoyama D. Enhancement of electrontransport by horizontal molecular orientation of oxadiazole planar molecules in organic amorphous films / D. Yokoyama , A.Sakaguchi, M.Suzuki, C.Adachi // Appl Phys Lett. – 2009. -Vol. 95.- P. 243.
12. Bagchi K. Origin of an isotropic molecular packing in vapor - deposited Alq3 glasses / K.Bagchi, N.E.Jackson, A.Gujraletal // J. Phys. Chem. Lett. -2018. -Vol.10.-P.164–170.
13. Moynihan C.T.,Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments / C.T. Moynihan, S.K.Lee, M.Tatsumisago, T.Minami // Thermochim Acta. – 2016.- P. 280–281.
14. Wolynes P.G. Spatiotemporal structures in aging and rejuvenating glasses / P.G.Wolynes // Proc Natl Acad Sci USA. -2009. -Vol.106.-P. 1353–1358.
15. Goldstein M. Viscous liquids and the glass transition: a potential energy barrier picture /M. Goldstein // J. Chem. Phys. – 2003. -Vol. 51.- P. 3728.
16. Pogna E.A. Probing equilibrium glass flow up to exapoise viscosities / E.A. Pogna, C. Rodríguez-Tinoco, G. Cerullo // Proc Natl Acad Sci USA. – 2015.-Vol. 112.-P. 2331–2336.
17. Pablo G. Debenedetti, Supercooled and glassy water /G. Pablo // J. Phys. Condens. Matter. – 2003. – Vol. 15 (45). – P. 1669.
18. Pablo G. Supercooled liquids and the glass transition Nature / G.Pablo, H.Frank // J. Phys. Condens. Matter. – 2018.- Vol. 410. – P. 259.
19. Chua Y. Glass transition and stable glass formation of tetrachloromethane / Y.Chua, Z.M. Tylinski, S. Tatsumi, M. D. Ediger, C. Schick // J. Chem. Phys. – 2016.– Vol. 144. – P. 244503.

Downloads

Published

2022-12-19

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)