Cosmographic analysis of a model of the pulsating universe with diverse types of matter

Authors

DOI:

https://doi.org/10.26577/RCPh.2023.v84.i1.04
        148 65

Keywords:

pulsating universe, scalar field, fermion field, Yukawa-type interaction, vector field, cosmography, energy conditions

Abstract

In this paper, a model of a pulsating universe is investigated with periodic function of the scale factor together with a homogeneous, isotropic and spatially flat Friedman-Robertson-Walker metric. The parameters of the pulsating universe model coincide with observation parameters of the modern universe, taking into account the different contributions of various types of matter to its evolution. In the resulting solution, during periods of accelerated expansion of the universe, the scalar field with negative pressure makes a greater contribution to the expansion growth. The fermionic field and the vector field, which have positive pressure values during this period, prevent the growth of this expansion. During periods of compression, the fermionic field and the vector field have a greater influence on the dynamics of the evolution of the universe. In the resulting periodic solution, the universe goes through endless cycles of expansion and contraction. The observed modern accelerated expansion of the universe corresponds to one of these cycles. Cosmographic parameters are calculated - parameters of deceleration q, jerk j and snap s and energy conditions for the model under research. These parameters make it possible to link model-independent results obtained from cosmography with theoretically sound assumptions of gravity.

References

1 Y.F.Cai, E. N. Saridakis, Cosmological J 17, 7238 (2011).

2 Y.F. Cai, E. N. Saridakis, Classical and Quantum Gravity 28, 035010 (2011).

3 A.G. Riess et al., Astrophysical J. 607, 665–687 (2004).

4 D.N. Spergel, L.Verde et.al., Astrophys. J. Supplements Series148, 175 (2003).

5 S. Nojiri, S. D.OdintsovPhys.Review D78, 046006 (2008).

6 S. Nojiri, S.D. Odintsov, D. Saez-Gomez, American Institute of Physics 207, 2007 (2012).

7 K. Bamba, S.Nojiri, S. D. Odintsov, Journal of Cosmology and Astroparticle Physics0810, 045 (2008).

8 K. Bamba, S. D. Odintsov, L. Sebastiani, S. Zerbini, The European Physical Journal C67, 295 (2010).

9 K. Bamba, O. Razina, K. Yerzhanov, R. Myrzakulov, International Journal of Modern Phys.67, 310 (2013).

10 T. Padmanabhan, Physical Review D66, 021301 (2002).

11 A. Feinstein , Physical Review D66, 063511 (2002).

12 L. R.W.Abramo, F.Finelli, Physics Letters B575, 165 (2003).

13 J. M. Aguirregabiria, R.Lazkoz, Physical Review D69, 123502 (2004).

14 J. M. Aguirregabiria, L.P.Chimento, R.Lazkoz, Phys. Review D70, 023509 (2004).

15 G. Calcagni, A. R. Liddle, Physical Review D74, 043528 (2006).

16 R. Myrzakulov, D. Saez-Gomez, P.Tsyba, International Journal of Geometric Methods in Modern Physics. 12, 1550023 (2015).

17 K. Yerzhanov, K. Yesmakhanova, P.Tsyba, N.Myrzakulov, G.Nugmanova, R.Myrzakulov, Astrophysics and Space Science. 341(2), 681-688 (2012).

18 P. Avelino et al., Journal of Environmental Policy and Planning8(2), 70 (2016).

19 A. Joyce, B.Jain, J. Khoury,M.Trodden, Physics Reports 568(2), 1 – 98 (2015).

20 K. Bamba, S. Capozziello, S. Nojiri, S. Odintsov, Astrophysics and Space Science. 342, 155 – 228 (2012).

21 E. J. Copeland, M. Sami, S. Tsujikawa, International Journal of Modern Physics D15(11), 1753-1935 (2006).

22 J. E. Peebles, B. Ratra, Reviews of Modern Physics 75, 559 (2003).

23 S. Capozziello, M. De Laurentis, S.Nojiri, S D.Odintsov, Physical Review D 79, 559 (2009).

24 M. O.Ribas, F. P. Devecchi, G. M. Kremer, Physical Review D72, 3502 (2005).

25 J. Robert Scherrer, Physics Letters B 798, 134981 (2019).

26 Y. F. Cai and E. N. Saridakis, Phys. Rept 28,035010 (2009).

27 O. Razina, P.Tsyba, B. Meirbekov, R. Myrzakulov, International Journal of Modern Physics D 28(10), 1950126 (2019).

28 O. Razina, P.Tsyba, Z. M.Sagidullayeva, Bulletin of the University of Karaganda-Physics 1(93), 94 – 102 (2019).

29 V. Sahni and A.Toropensky, Phys.Rev.D 85, 3542 (2012).

30 Kulnazarov, K. Yerzhanov, O. Razina, Sh. Myrzakul, P. Tsyba, R. Myrzakulov, The European Physical Journal C 71(7), 1698 (2011).

31 P. Tsyba, O. Razina, Z. Barkova, S. Bekov and R. Myrzakulov, Journal of Physics: Conference Series 1391, 012162 (2019).

32 O. V. Razina, P. Yu. Tsyba, R. Myrzakulov, B. Meirbekov, Z.Shanina, Journal of Physics Conference Series 1391, 012164 (2019).

33 O. Razina, P. Tsyba, N. Suikimbayeva, International Journal of Modern Physics D 30(15), 2150114 (2021).

34 G. Altayeva, O. Razina, P. Tsyba, Bulletin of the University of Karaganda-Physics 2(106), 37–48 (2022).

35 S.A. Myrzakulova, O.V. Razina, N.A. Myrzakulov, A.B. Altaybaeva, Recent Contributions to Physics 81(2), 19-27 (2022).

36 D.Z. Rakhatov, P.Y. Tsyba, O.V. Razina, Recent Contributions to Physics 80(1), 12-21 (2022).

37 M. Jamil, N.A. Myrzakulov, K.K.Yerzhanov, D.Momeni and R.Myrzakulov General Physics 3, 4360 (2012).

38 Yu. L. Bolotin, D. A. Erokhin, O. A. Lemets, Rasshiriaiushchaiasia Vselennaia: zamedlenieiliuskorenie? (Ukrain: Physics Uspekhi 2012),рр.876 – 918 (in Russ).

39 R. Arjona, S. Nesseris, Physical Review D 103,063537 (2021).

40 4S. Capozziello, V. F. Cardone, V. Salzano, Physical Review D 78, 063504 (2008).

Downloads

How to Cite

Altayeva, G., Razina О., Tsyba, P., & Altaibayeva, A. (2023). Cosmographic analysis of a model of the pulsating universe with diverse types of matter. Recent Contributions to Physics (Rec.Contr.Phys.), 84(1), 29–40. https://doi.org/10.26577/RCPh.2023.v84.i1.04

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics