MOCK OBSERVATIONS OF SIMULATED STAR CLUSTER ON SOLAR ORBIT

Authors

  • M.T. Kalambay Fesenkov Astrophysical Institute, Almaty, Kazakhstan; Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan; Al-Farabi Kazakh National University, Almaty, Kazakhstan http://orcid.org/0000-0002-0570-7270
  • A.Zh. Naurzbayeva Al-Farabi Kazakh National University, Almaty, Kazakhstan; Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan http://orcid.org/0000-0001-6653-2948
  • A.B. Otebay Fesenkov Astrophysical Institute, Almaty, Kazakhstan; Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan http://orcid.org/0000-0003-3041-547X
  • A.T. Abdinassilimm Al-Farabi Kazakh National University, Almaty, Kazakhstan http://orcid.org/0000-0002-2726-0879
  • D. Kuvatova Fesenkov Astrophysical Institute, Almaty, Kazakhstan http://orcid.org/0000-0002-5937-4985
  • A.D. Assilkhan Daukeev Almaty University of Power Engineering and Telecommunication, Almaty, Kazakhstan; Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan http://orcid.org/0000-0001-6428-2084
  • T. Panamarev Fesenkov Astrophysical Institute, Almaty, Kazakhstan http://orcid.org/0000-0002-1090-4463
  • B.T. Shukirgaliyev Energetic Cosmos Laboratory, Nazarbayev University, Astana, Kazakhstan;; Fesenkov Astrophysical Institute, Almaty, Kazakhstan; Al-Farabi Kazakh National University, Almaty, Kazakhstan http://orcid.org/0000-0002-4601-7065
  • P.P. Berczik Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Heidelberg, Germany; Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), MTA Centre of Excellence, Budapest, Hungary; Main Astronomical Observatory, National Academy of Sciences of Ukraine, Ukraine http://orcid.org/0000-0003-4176-152X

DOI:

https://doi.org/10.26577/RCPh.2022.v83.i4.01
        144 101

Keywords:

Кілт сөздер: Жұлдызды шоғырлар, Галактикалық координаттар жүйесі, Экваторлық координаттар жүйесі, Сандық модельдеу.

Abstract

With the advent of the Gaia DR2 catalog, which contains astrometric and photometric parameters for a large number of stars, measured with a high degree of accuracy, data about the cosmos and the Universe, including Star clusters in our Galaxy, are growing. However, when observed, the cluster stars are lost against the background of stars in the dense Galactic field. In addition, observational data alone is not sufficient to study real clusters from birth to destruction. In this regard, a number of numerical simulations of star clusters have been running to explain the processes and to determine the membership of cluster stars. And for this, we need to conduct a mock observation of model clusters. In this paper, we performed analyses on the output data from numerical simulations and developed a method for conducting mock observations of model clusters.

We took one model of a star cluster with an age of 350 Myr, with a mass of 6000 , and with a star formation efficiency SFE=0.25, and put it in different galactic longitudes and at different distances from the Sun. In conclusion, using this method, we can put a cluster at any point on the celestial sphere, and this in turn allows you to compare with the real observed clusters and evaluate the possibility of detecting physical parameters in them.

References

1. Lada, C. J., & Lada, E. A. Embedded Clusters in Molecular Clouds // Annual Review of Astronomy and Astrophysics. – 2003. – Vol. 41, –P. 57-115.
2. Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. Star Clusters Across Cosmic Time // Annual Review of Astronomy and Astrophysics. – 2019. – Vol. 57, –P. 227-303.
3. Rahner, D., Pellegrini, E. W., Glover, S. C. O., et al. WARPFIELD 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds // Monthly Notices of the Royal Astronomical Society. – 2019. – Vol. 483, – P. 2547-2560
4. McLeod, A. F., Ali, A. A., Chevance, M., Della Bruna, L., Schruba, A., Stevance, H. F., Adamo, A., Kruijssen, J. M. D., Longmore, S. N., Weisz, D. R., et al. The impact of pre-supernova feedback and its dependence on environment // Monthly Notices of the Royal Astronomical Society. - 2021. – Vol. 508, –P. 5425.
5. Madau, P., & Dickinson, M., Cosmic Star-Formation History // Annual Review of Astronomy and Astrophysics, 2014, - Vol.52, – P. 415-486.
6. Fukushige, T., & Heggie, D. C. Pre-collapse evolution of galactic globular clusters // Monthly Notices of the Royal Astronomical Society. – 1995. – Vol. 276. – P. 206-218.
7. Tanikawa, A., & Fukushige, T. Mass-Loss Timescale of Star Clusters in an External Tidal Field. I. Clusters on Circular Orbits // Publications of the Astronomical Society of Japan. – 2005. – Vol. 57. – P. 155-164
8. Whitehead, A. J., McMillan, S. L. W., Vesperini, E., & Portegies Zwart, S. Simulating Star Clusters with the AMUSE Software Framework. I. Dependence of Cluster Lifetimes on Model Assumptions and Cluster Dissolution Modes // The Astrophysical Journal. – 2013. – Vol. 778. – P. 118.
9. Ernst, A., Berczik, P., Just, A., & Noel, T. Roche volume filling and the dissolution of open star clusters // Astronomische Nachrichten. – 2015. – Vol. 336. – P. 577-589.
10. Kennicutt, R. C., & Evans, N. J. Star Formation in the Milky Way and Nearby Galaxies. // Annual Review of Astronomy and Astrophysics. – 2012. – Vol. 50. – P. 531-608.
11. Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. Star Clusters Across Cosmic Time. // Annual Review of Astronomy and Astrophysics. – 2019. – Vol. 57. – P. 227-303.
12. Chandar, R., Fall, S. M., & Whitmore, B. C. New Tests for Disruption Mechanisms of Star Clusters: The Large and Small Magellanic Clouds. // The Astrophysical Journal. – 2010. – Vol. 711, – P. 1263-1279.
13. Gaia Collaboration, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J., Babusiaux, C., Bailer-Jones, C. A. L., Biermann, M., Evans, D. W., Eyer, L., Jansen, et al. Gaia Data Release 2. Summary of the contents and survey properties // Astronomy and Astrophysics. - 2018. – Vol. 616, –P. A1.
14. Tang, S.-Y., Pang, X., Yuan, Z., Chen, W. P., Hong, J., Goldman, B., Just, A., Shukirgaliyev, B., & Lin, C.-C. Discovery of Tidal Tails in Disrupting Open Clusters: Coma Berenices and a Neighbor Stellar Group // The Astrophysical Journal. – 2019. – Vol. 877.
15. Röser, S., & Schilbach, E. Praesepe (NGC 2632) and its tidal tails // Astronomy and Astrophysics. - 2019.- Vol. 627, - P. A4.
16. Röser, S., Schilbach, E., & Goldman, B. Hyades tidal tails revealed by Gaia DR2 // Astronomy and Astrophysics. - 2019. – Vol. 621, P.- L2.
17. Sharma, S., Bland-Hawthorn, J., Johnston, K. V., & Binney, J. Galaxia: A Code to Generate a Synthetic Survey of the Milky Way // The Astrophysical Journal. - 2011. – Vol.730, –P. 3.
18. Shukirgaliyev, B., Parmentier, G., Just, A., et al. The Long-term Evolution of Star Clusters Formed with a Centrally Peaked Star Formation Efficiency Profile // The Astrophysical Journal. – 2018. – Vol. 863, –P. 171.
19. Shukirgaliyev, B., Parmentier, G., Berczik, P., & Just, A. The star cluster survivability after gas expulsion is independent of the impact of the Galactic tidal field // Monthly Notices of the Royal Astronomical Society. – 2019. – Vol. 486. – P. 1045-1052.
20. Shukirgaliyev, B., Parmentier, G., Berczik, P., et al. Star Clusters in the Galactic tidal field, from birth to dissolution // Star Clusters: From the Milky Way to the Early Universe. – 2020. – Vol. 351, – P. 507-511.
21. Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, et al. Astropy: A community Python package for astronomy // Astronomy and Astrophysics. - 2013. – Vol. 558, –P. A33.

Downloads

How to Cite

Kalambay, M., Naurzbayeva, A., Otebay, A., Abdinassilimm, A., Kuvatova, D., Assilkhan, A., Panamarev, T., Shukirgaliyev, B., & Berczik, P. (2022). MOCK OBSERVATIONS OF SIMULATED STAR CLUSTER ON SOLAR ORBIT. Recent Contributions to Physics (Rec.Contr.Phys.), 83(4), 4–12. https://doi.org/10.26577/RCPh.2022.v83.i4.01

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics