Calculation of transport characteristics of Yukawa systems by molecular dynamics method

Authors

  • S.K. Kodanova Al-Farabi Kazakh National University, IETP, Almaty, Kazakhstan
  • N.E. Djienbekov Al-Farabi Kazakh National University, IETP, Almaty, Kazakhstan
  • N.Kh. Bastykova Al-Farabi Kazakh National University, IETP, Almaty, Kazakhstan
  • M.K. Issanova Al-Farabi Kazakh National University, IETP, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/RCPh.2023.v87.i4.04

Keywords:

Yukawa systems, molecular dynamics method, transport properties, diffusion, thermalconductivity

Abstract

In this paper, the transport characteristics of two-dimensional systems has been investigated. Modeling by means of the Yukawa potential, in a wide range of values of the nonideality parameter, has been carried out. The Yukawa potential was chosen because of its wide applicability in the description of screened interactions in plasmas and other systems. A molecular dynamics method was used to determine the transport characteristics. The study was carried out with the aim of expanding the knowledge of heat transfer in two-dimensional systems. The paper presented the results of numerical experiments in which the dependences of the heat transfer and viscosity coefficients on the screening and non-ideality parameters in systems with Yukawa potential were studied. The obtained data can also serve as a basis for further theoretical and experimental studies in the field of transport characteristics of two-dimensional systems. These data not only expand the understanding of the peculiarities of two-dimensional systems, but also can be useful in the design and analysis of nanostructures and various microdevices.

References

A.A. Ovchinnikov, S.F. Timashev, Kinetics of Diffusion Controlled Chemical Processes, (New York, Nova Science Publishers,Commack, 1989), 132 p.

S.V. Vladimirov, K. Ostrikov, Physics and Applications of Complex Plasmas, (London, Imperial College, 2005), 456 p.

P. Hartmann, Z. Donkó, T. Ott, H. Kählert, and M. Bonitz, Physical review letters, 111, 155002 (2013).

M. Bonitz, Z. Donkó, T. Ott, H. Kählert, & P. Hartmann, Physical review letters, 105, 055002 (2010).

J. Thomas, Edward, B. Lynch, U. Konopka, R. L. Merlino, & M. Rosenberg, Physics of Plasmas, 22, 030701 (2015).

T.B. Mitchell, J.J. Bollinger, X.-P. Huang, W.M. Itano, & D.H.E. Dubin, Physics of Plasmas, 6, 1751 (1999).

K.I. Golden, G.J. Kalman, P. Hartmann, & Z. Donkó, Phys. Rev. E, 82, 036402 (2010).

Y.K. Aldakul, Z.A. Moldabekov, & T. S. Ramazanov, Phys. Rev. E, 102, 033205 (2020).

N.E. Djienbekov, N.K. Bastykova, A.M. Bekbussyn, T.S. Ramazanov, & S.K. Kodanova, Phys. Rev. E, 106, 065203 (2022).

J. Zanghellini, P. Keim, and H.H. von Grünberg, Journal of Physics: Condensed Matter, 17, S3579–S3586 (2005).

H.H. von Grünberg, P. Keim, K. Zahn, & G. Maret, Phys. Rev. Lett., 93, 255703 (2004).

M. Lemeshko, R.V. Krems, J.M. Doyle, & S. Kais, Molecular Physics, 111, 1648 (2013).

B. Bernu & P. Vieillefosse, Phys. Rev. A, 18, 2345 (1978).

Z. Donkó, J. Goree, P. Hartmann, & B. Liu, Phys. Rev. E, 79, 026401 (2009).

Y.V. Khrustalyov & O.S. Vaulina, Phys. Rev. E, 85, 046405 (2012).

F. Müller-Plathe, The Journal of Chemical Physics, 106, 6082-6085 (1997).

Z. Donkó and P. Hartmann, Phys. Rev. E, 69, 016405 (2004).

A. Shahzad, M.-G. He, Physics of Plasmas, 22(12), 123707 (2015).

Downloads

Published

2023-12-20

Most read articles by the same author(s)

1 2 > >>