Technology for processing carbon-containing waste
Keywords:
carbonaceous waste, plasma processing, thermal treatment, pyrolysis, synthesis gas, disposal of waste, composting, dioxins, furans, benz(a)pyreneAbstract
Today, population growth on the planet and the intensification of human activities in connection with the scientific and technological revolution inevitably leads to a sharp increase in the anthropogenic impact on the environment. Human impact exceeds the regeneration capabilities of the natural environment. This article is review of technologies for processing of different waste. Initially, all kinds of waste sorting on secondary raw materials (metal, glass, paper, plastics and polymers) and utilized organic part. Sorting is subjected to industrial and municipal waste that can be identified. However, there are a number of hazardous wastes that are not subject to sorting. These include biomedical and radioactive waste. Modern technologies make it possible not only to destroy hazardous waste, but also to get the material and energy resources. The most promising of them is high-temperature plasma processing of waste. It is practically the only waste processing technology that guarantees the destruction of dangerous biological, biochemical, chemical products and super toxicants - benz(a)pyrene, furans, dioxins and dioxin-like substances. Plasma gasification of carbonaceous waste produces high-energy and environmentally friendly synthesis gas. Synthesis gas can be used as an energy gas, a raw reagent for the synthesis of synthetic liquid fuels and an economical energy carrier for modern power generators. The remaining ash is processed into granular slag or ceramic tile.
References
2. Обезвреживание отходов термическим способом (сжигание отходов) / Информационно-технический справочник по наилучшим доступным технологиям (ИТС 9 – 2015). Москва: Бюро НДТ. – 2015. – 249 с.
3. Мессерле В.Е., Моссэ А.Л., Устименко А.Б. Плазменная газификация углеродсодержащих отходов. Современная наука: исследования, идеи, результаты, технологии. – Выпуск 1 (16). – Днепропетровск: «НПВК Триакон», 2015. – С. 195-199.
4. Моссэ А.Л., Савчин В.В. Плазменные технологии и устройства для переработки отходов. – Минск: Беларуская навука, 2015. – 411 с. – ISBN 978-985-08-1856-0
5. Мессерле В.Е., Моссэ А.Л., Никончук А.Н., Устименко А.Б. Плазмохимическая переработка медико-биологических отходов. Инженерно-физический журнал. – 2015. – Т.88, № 6. – С. 1420-1424.
6. Аньшаков А.С., Фалеев В.А., Даниленко А.А., Урбах Э.К., Урбах А.Э. Исследование плазменной газификации углеродсодержащих техногенных отходов. Теплофизика и аэромеханика. - 2007. - Т. 14, № 4. – С. 639 – 650.
References
1 G. Davidson, Waste Management Practices: Literature Review, Dalhousie University, Office of Sustainability, 59 p., 2011.
2 Neutralization of waste thermally (incineration) / Information and technical reference for the best available techniques (ITS 9 - 2015). Moscow: Bureau NDT,2015, 249 p. (in russ).
3 V.E. Messerle, A.L. Mosse, A.B. Ustimenko, Modern science: investigations, ideas, results, technologies, 1 (16), 195-199, (2015).
4 A.L. Mosse, V.V. Savchin, Plasma technologies and devices for waste processing, Minsk: Belaruskaya navuka, ISBN 978-985-08-1856-0, 411 p., 2015. (in russ).
5 V.E. Messerle, A.L. Mosse, A.N. Nikonchuk, A. B. Ustimenko, Journal of Engineering Physics and Thermophysics, 88(6), 1471-1475. (in russ).
6 A.S. An'shakov, V.A. Faleev, A.A. Danilenko, E.K. Urbakh, A.E. Urbakh, Thermophysics and Aeromechanics, 14(4), 607–616, (2007). (in russ).