Microstructure, elemental and phase composition and physical-mechanical properties of nanocomposite (Ti-Zr-Hf-V-Nb-Ta)N coatings before and after implantation of high doses of nitrogen ions
Keywords:
implantation, microstructure, nanohardness, deposition, microanalysisAbstract
The structure and properties of multicomponent nanostructured coatings (TiHfZrNbVTa) N implanted with very high 1018 cm-2 doses of ions N+ were investigated. Multilayered structure consisting of an amorphous nanocrystalline (dispersed) and nanostructured with original size of the nanograins formed as a result of the implantation of ions in the surface layer of the nanostructured coating. 2 phases formed шn the depth of the coating: FCC and HCP with a small volume fraction. Nitrogen concentration near the surface reachуs up to 90 at.% and then decreases with depth. In the initial state after deposition the nanohardness of the coating, depending on the deposition conditions, ranges from 27 to 39 GPa. As a result of the implantation, the value of the hardness decreases approximately to the depth of the ions projected range up to 12 GPa, and further increases with the depth up to 23 GPa. It were used such analysis techniques as: scanning electron microscopy (SEM) with microanalysis (EDS), X-ray diffraction (XRD), nanoindentation, tests for wear.
References
2 Komarov F.F. Ion Beam Modification of Metals, Gordon and Breach Science Publishers, Philadelphia. – 1992.
3 Lavrentiev V.I., Pogrebnjak A.D. High-dose ion implantation into metals // Surface and Coatings Technology. – 1998. – Vol. 99. – P. 24-32.
4 Ivasishin O.M., Pogrebnjak A.D., Bratushka S.N. Nanostructured Layers and Coatings Formed by Ion-Plasma Fluxes in Titanium Alloys and steels. – Kiev: Academperiodika, 2011. – P. 270.
5 Pogrebnjak A.D., Bratushka S.N., Beresnev V.M., Levintant-Zayonts N. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses // Russian Chemical Reviews. – 2013. – Vol. 82, №12. – P. 1135–1159.
6 Senkov O.N., Senkova S.V., Dimiduk D.M., Woodward C., Miracle D.B. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy // Journal of Materials Science – 2012. – Vol. 47. – P. 6522–6534.
7 Salishchev G., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // Journal of Alloys and Compounds. – 2014. – Vol. 591. – P. 11-24.
8 Braic V., Alina Vladescu, Balaceanu M., Luculescu C.R., Braic M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings // Surface and Coatings Technology. – 2012. – Vol. 211. – P. 117–121.
9 Tsai D.C., Huang Y.L., Lin S.R., Liang S.C., Shieu F.S. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering // Applied Surface Science. – 2010. –Vol. 257. – P. 1361–1367.
10 Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V. M. The structure and properties of high-entropy alloys and nitride coatings based on them // Russian Chemical Reviews. – 2014. Vol.83, № 11. – P. 1027-1061.
11 Pogrebnjak A.D., Yakushchenko I.V., Bagdasaryan A.A., Bondar O.V., Krause-Rehberg R., Abadias G., Chartier P., Oyoshi K., Takeda Y., Beresnev V.M., Sobol O.V. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions // Materials Chemistry and Physic. – 2014. – Vol. 147, № 3. – P. 1079-1091.
12 Pogrebnjak A.D., Yakushchenko I.V., Bondar O.V., Sobol O.V., Beresnev V.M., Oyoshi K., Amekura H., Takeda Y. The microstructure of a multielement nanostructured (TiZrHfVNbTa)N coating and its resistance to irradiation with Au– ions // Technical Physics Letters. – 2015. – Vol. 41, № 11. – P. 1054-1057.
13 Pogrebnjak A.D., Yakushenko I. V., Bondar O.V., Sobol O.V., Beresnev V.M., Oyoshi K., Amekura H., Takeda Y. Influence of Implantation of Au– Ions on the Microstructure and Mechanical Properties of the Nanostructured Multielement (TiZrHf VNbTa)N Coating // Physics of the Solid State. – 2015. – Vol. 57, № 8. – P. 1559-1564.
14 Feng X., Tang G., Ma X., Sun M., Wang L. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based on ion implantation // Nuclear Instruments and Methods in Physics Research Section B. – 2013. – Vol. 301. – P. 29.
15 Uglov V.V., Abadias G., Rovbut A.Y., Zlotski S.V., Saladukhin I.A., Skuratov V.A., Petrovic S. Thermal stability of nanocrystalline (Ti,Zr)0.54Al0.46N films implanted by He+ ions // Nuclear Instruments and Methods in Physics Research Section B. – 2015. – Vol. 354. – P. 269- 273.
16 Комаров Ф.Ф., Погребняк А.Д., Константинов С.В. Радиационная стойкость высокоэнтропийных наноструктурированных покрытий (Ti, Hf, Zr, V, Nb)N // Письма в ЖТФ. – 2015. – Т. 85, № 10. – С. 105-110.
17 Plotnikov S.V., Pogrebnyak A.D., Tleukenov Y.O., Erdybaeva N.K. Functional properties of multilayer vacuum-arc TiN/ZrN coatings // Materials Science and Engineering.-2016. – V. 110.
18 Tleukenov Y.O., Plotnikov S.V., Erdybaeva N.K., Pogrebnyak A.D. Studying of nanocomposite films’ structure and properties obtained by magnetron sputtering // Materials Science and Engineering. – 2016. – Vol. 110.
References
1 A.D. Pogrebnjak, A.M. Tolopa, Nuclear Instruments and Methods, B52, 24-43, (1990).
2 F.F. Komarov, Gordon and Breach Science Publishers, Philadelphia, 1992
3 V.I. Lavrentiev, A.D. Pogrebnjak, Surface and Coatings Technology, 99, 24-32, (1998).
4 O.M. Ivasishin, A.D. Pogrebnjak, S.N. Bratushka, Nanostructured Layers and Coatings Formed by Ion-Plasma Fluxes in Titanium Alloys and steels. Kiev, 2011
5 A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts. Russian Chemical Reviews 82, 1135–1159, (2013).
6 O.N. Senkov, S.V. Senkova, Dimiduk D.M., Woodward C., Miracle D.B., Journal of Materials Science 47, 6522–6534, (2012).
7 G. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Journal of Alloys and Compounds, 591, 11-24, (2014).
8 V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic, Surface and Coatings Technology, 211, 117–121, (2012).
9 D.C.Tsai, Y.L. Huang, S.R. Lin, S.Cю Liang, F.S. Shieu, Applied Surface Science 257, 1361–1367, (2010).
10 A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, Russian Chemical Reviews, 83, 1027-1061, (2014).
11 A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol, Materials Chemistry and Physics 147, 1079-1091, (2014).
12 A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, O.V. Sobol, V.M. Beresnev, K. Oyoshi, H. Amekura, Y. Takeda, Technical Physics Letters, 41, 1054-1057, (2015).
13 A.D. Pogrebnjak, I.V. Yakushenko, O.V. Bondar, O.V. Sobol, V.M. Beresnev, K. Oyoshi, H.Amekura, Y. Takeda, Physics of the Solid State, 57, 1559-1564. (2015).
14 X. Feng, G. Tang, X. Ma, M. Sun, L. Wang, Research Section B, 301, 29, (2013)
15 V.V. Uglov, G. Abadias, A.Y. Rovbut, S.V. Zlotski, I.A. Saladukhin, V.A. Skuratov, S. Petrovic, Nuclear Instruments and Methods in Physics Research Section B, 354, 269- 273, (2015).
16 F.F. Komarov, A.D. Pogrebnjak, S.V. Konstantinov, Pisma v ZhETF, 85:105-110, (2015). (in russ).
17 S.V. Plotnikov, A.D. Pogrebnyak, Y.O. Tleukenov, N.K. Erdybaeva, Materials Science and Engineering, 110, (2016).
18 Y.O. Tleukenov, S.V. Plotnikov, N.K. Erdybaeva, A.D. Pogrebnyak, Materials Science and Engineering, 110, (2016).