White dwarf stars taking into account nuclear composition in general relativity
Keywords:
white dwarfs, the Salpeter equation of state, general relativity, catalogs SDSS DR 4, 10 and 12Abstract
In this work static cold white dwarfs are investigated by means of the Salpeter equation of state within general theory of relativity. The main parameters of white dwarfs such as mass, radius, central density and pressure are calculated solving the Tolman-Oppenheimer-Volkoff equation, employing the Salpeter equation of state. In addition, the white dwarf characteristics from the Sloan Digital Sky Survey Data Releases 4, 10 and 12 are analyzed. The histogram and the Gaussian distribution of mass and radius are constructed for the catalogues. The maximum, minimum and average values of the logarithm of the surface gravity, effective temperature, mass and radius are calculated. The theoretical mass-radius relations are compared with the observational data. Finally, it has been shown that taking into account nuclear composition, neutronization threshold, the Thomas-Fermi corrections and Coulomb interactions is very important to describe some white dwarfs in the catalogues of the Sloan Digital Sky Survey Data Releases 10 and 12.
References
2 K. Boshkayev, J.A. Rueda, R. Ruffini, and I. Siutsou, The Astrophysical Journal, 762 (2), 117 (2013).
3 E.E. Salpeter, Astrophys. J. 134 (3), 669 (1961).
4 T. Hamada and E. E. Salpeter, Astrophys. J. 134, 683 (1961).
5 D. Koester and G. Ghanmugam, Reports on Progress in Physics 53 (7), 837 (1990).
6 S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
7 S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (John Wiley & Sons, New York, 1983).
8 S.O. Kepler, I. Pelisoli, D. Koester, G. Ourique, A.D. Romero, N. Reindl, S.J. Kleinman, A.D. Romero, A. Nitta, D.J. Eisenstein, J.E.S. Costa, B. Kulebi, S. Jordan, P. Dufour and P. Giommi, Monthly Notices of the Royal Astronomical Society, 446 (4), 4078 (2015).
9 http://astro.if.ufrgs.br/keplerDR10.html.
10 S.O. Kepler, I. Pelisoli, D. Koester, G. Ourique, A.D. Romero, N. Reindl, S.J. Kleinman, D.J. Eisenstein, A.D.M. Valois and L. A. Amaral, Monthly Notices of the Royal Astronomical Society, 455 (4), 3413 (2016).
11 http://astro.if.ufrgs.br/keplerDR12.html.
12 P.-E. Tremblay, P. Bergeron, and A. Gianninas, The Astrophysical Journal, 730 (2), 128 (2011).
13 S.O. Kepler, A.D. Romero, I. Pelisoli, and G. Ourique, Inter. J of Modern Physics: Conf. Series, 45, 1760023 (2017).
14 S.O. Kepler, D. Koester, G. Ourique, Science, 352(6281), 67 (2016).
15 B.F. Schutz, A first course in general relativity (Cambridge University Press, Cambridge, 1985).
16 C. W. Misner, K.S. Thorne and J.A Wheeler, Gravitation, (W.H. Freeman and Co., San Francisco, 1973).
17 R. C. Tolman, Phys. Rev. 55(4), 364 (1939).
18 J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55(4), 374 (1939).
19 Ya. B. Zel’dovich, I.D. Novikov, Teoriya tyagoteniya i evoliutsii zvezd (Nauka, Moskva, 1971). (in Russ).
20 Ya. B. Zel’dovich, S.I. Blinnikov, N.I. Shakura, Fizicheskie osnovy stroeniya I evoliutsii zvezd, (Izdatel’stvo MGU, Moskva, 1981). (in Russ).
21 K.A. Boshkayev, B.A. Zhami, Zh.A. Kalymova, G.Sh. Balgimbekov, A.S. Taukenova, Zh. N. Brisheva and N. Koyshybaev, News of NAS RK, phys.-math. series, 3 (307), 49 (2016). (in Russ).
22 K. Boshkayev, H. Quevedo and B. Zhami, Monthly Notices of the Royal Astronomical Society, 464 (4), 4349 (2017).
23 K. Boshkayev, J.A. Rueda, B. Zhami, Zh. Kalymova, and G. Balgymbekov, Intern. J of Modern Physics: Conf. Series 42, 1660129 (2016).
24 K.A. Boshkayev, B.A. Zhami, Zh.A. Kalymova, and Zh. N. Brisheva, News of NAS RK, phys.-math. series, 6 (316), 27 (2017). (in Russ).
25 S. M. de Carvalho, M. Rotondo, J.A. Rueda, and R. Ruffini, Phys. Rev. C., 89, 015801 (2014).