Stopping of charged particles in dense one-component plasmas
Keywords:
one-component plasma, stopping power, method of moments, Coulomb system, Nevanlinna formulaAbstract
In this paper, we examine the energy losses of charged particles, moving at different initial velocities in an electron fluid. It is illustrated that the stopping power at high velocities lies below the asymptotics of Bethe-Larkin. At low particle velocities, υ, the dependence of energy losses on velocity in the random phase approximation behaves rectilinear. In the current article, we use the method of moments, which allows us to determine the stopping power of a non-ideal plasma without small-parameter expansion. The universality of this approach is that it allows one to use for calculations various effective potentials of interparticle interaction. Another important advantage of the approach is the opportunity to determine the dynamic characteristics of Coulomb systems by obtained static ones, that can be found from the solution of the Ornstein-Zernike equation in the hypernetted chain approximation, using the potentials specified in the work. The peculiarity of calculations in the method of moments application consists in the determination of so-called Nevanlinna parameter-function, included in the computed relations. In this contribution, we employ an empirical expression for Nevanlinna parameter-function.
References
2 J. Daligault, Phys. Rev. Lett, 119, 045002 (2017).
3 M.S. Murillo, Phys. Plasmas 11, 2964 (2004).
4 V. Fortov, I. Iakubov, A. Khrapak, Physics of Strongly Coupled Plasma (Oxford, Clarendon Press, 2006).
5 F. Graziani, M.P. Desjarlais, R. Redmer, and S. D. B. Trickey, Frontiers and Challenges in Warm Dense Matter, Springer, Berlin, 2014.
6 T.C. Killian, T. Pattard, T. Pohl, and J.M. Rost, Phys. Reports 449, 77 (2007).
7 S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, and P. Pincus, J. Chem. Phys. 80, 5776 (1984).
8 S.L. Gilbert, J.J. Bollinger, and D.J. Wineland, Phys. Rev. Lett. 60, 2022 (1988).
9 H. Ohta and S. Hamaguchi, Phys. Rev. Lett. 84, 6026 (2000).
10 S. Ichimaru, Rev. Mod. Phys. 65, 255, (1993).
11 F. Wagner., EPJ Web of Conferences., 54. 01007 (2013) doi: 10.1051/epjconf/20135401007).
12 Bruecker K.A., Jorna S., Rev. Mod. Phys., 46, 325 (1974).
13 R.M. More in Applied atomic collision physics, edited by Massey H.S.W., McDaniel E.W., Bederson B. (New York:Academic, 1984).
14 G. Duderstadt, G. Moses, Inertial fusion / English TRANS., edited by L. V. Belov, (Moscow: Energoatomizdat, 1984), 304 p.
15 H.A. Bethe, Ann. Phys. (Berlin), 5, 325 (1930).
16 Larkin A. I., Zh. Eksp. Teor. Fiz., 37, 264 (1959) (Sov. Phys. JETP, 37 186, (1960)).
17 N.R.J. Arista Phys. C 18, 5127 (1985).
18 I.M. Tkachenko, Y.V. Arkhipov, and A. Askaruly, The Method of Moments and its Applications in Plasma Physics (Lambert, SaarbruЁcken, 2012).
19 Yu.V. Arkhipov, A.B. Ashikbayeva, A. Askaruly, V.V. Voronkov, A.E. Davletov, I.M. Tkachenko International scientific conference "Actual problems of modern physics" (Almaty, 2013), p. 171.
20 Yu.V. Arkhipov et al., Phys.Rev.Lett., 119, 045001 (2017)
21 V.M. Adamyan, I.M. Tkachenko, High Temp., 21 307 (1983).
22 Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, K.V. Starikov Pseudopotential theory of high-temperature dense plasma, (Almaty: Kazakh University, 2002), 113 p. (in Russ).
23 J. Ortner, I.M. Tkachenko, Phys. Rev. E 63 026403 (2001).
24 M.D. Barriga-Carrasco, Phys. Rev. E 76, 016405 016405 (2007).
25 M.D. Barriga-Carrasco, Phys. Rev. E 79, 027401 027401 (2009).