A chemical model of a three-component dusty plasma

Authors

  • A.E. Davletov Al-Faraby Kazakh National University, Institute of Experimental and Theoretical Physics, Kazakhstan, Almaty
  • F. Kurbanov Al-Faraby Kazakh National University, Institute of Experimental and Theoretical Physics, Kazakhstan, Almaty
  • Ye.S. Mukhametkarimov Al-Faraby Kazakh National University, Institute of Experimental and Theoretical Physics, Kazakhstan, Almaty
        77 41

Keywords:

dusty plasma, self-consistent chemical model, free energy

Abstract

A chemical model of a three-component dusty plasma consisting of electrons, protons, and dust particles is developed. The number density of protons is assumed to be fixed, and the absorption of electrons by dust particles is considered as bound states, determined by the work function of the electrons. An expression is obtained for the free energy of the system, which includes the ideal and excess parts. The contribution of interactions between particles is considered in the framework of the generalized Poisson-Boltzmann integro-differential equation obtained from the Bogolyubov chain of equations for the equilibrium distribution functions in the pair correlation approximation. This equation is easily solved and transformed into a system of algebraic equations by using Fourier transformation and delta function properties. For perform numerical calculations, the Coulomb potential was chosen as the interaction of electrons and protons with each other in the absence of a plasma medium, and an identical potential for the interaction of dust particles, corrected for finite size. Numerical calculation show that the free energy of a three-component dusty plasma is a function of a single parameter and has a pronounced minimum, which can be used to evaluate the electric charge of dust particles immersed into a buffer plasma.

References

1 V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak and G.E. Morfill, Physics Reports 421, 1-103 (2005).

2 R.D. Smirnov, A. Yu. Pigarov, M. Rosenberg, S. I. Krasheninnikov and D. A. Mendis, Plasma Phys. Control. Fusion 49, 347-371 (2007).

3 S.I. Popel, A. P. Golub’, A.V. Zakharov, and L.M. Zelenyi, JETP Letters 106(8), 485–490 (2017).

4 S.I. Krasheninnikov, R.D. Smirnov and D.L. Rudakov, Plasma Phys. Control. Fusion, 53, 083001 (2011).

5 G.E. Morll, H.M. Thomas, U. Konopka, and M. Zuzic, Phys. Plasmas 6(5), 1769-1780, (1999).

6 V.E. Fortov and G.E. Morfill (ed) Complex and Dusty Plasmas (Boca Raton, FL: CRC Press, 2010), 440 p.

7 H. Ikezi, Phys.Fluids 29(6), 1764-1765, (1986).

8 J.E. Allen, Phys. Scr 45, 497-503, (1992).

9 P.M. Bellan, Physics of Plasmas 11(7), 3368-3379, (2004).

10 A.G. Zagorodny, P.P.J.M. Schram and S.A. Trigger, PRL 84(16), 3694-3597, (2000).

11 P.P.J.M. Schram, A.G. Sitenko, S.A. Trigger and A.G. Zagorodny, Phys.Rev.E. 63, 016403, (2000).

12 Kenneth M. Watson, Phys.Rev 102(1), 12-19, (1956).

13 Vladimir I. Vishnyakov, Phys. Rev. E. 85, 026402 (1-6), (2012).

14 D. Trunec, Z. Bonaventura, P. Zikan and J. Jansky, Contrib. Plasma Phys. 55(6), 481-493, (2015).

15 K. Matyash, R. Schneider, F. Taccogna, A. Hatayama, S. Longo, M. Capitelli, D. Tskhakaya and F.X. Bronold, Contrib. Plasma Phys 47, 595–634, (2007).

16 Gian Luca Delzanno and Xian-Zhu Tang, Physics of Plasmas 22, 113703, (2015).

17 H. M. Mott-Smith and Irving Langmuir, Phys. Rev. 28, 727, (1926).

18 D. Bohm, E. H. S. Burhop, and H. S. W. Massey, The Characteristics of Electrical Discharges in Magnetic Fields (Edited by A. Guthrie and R. K. Wakerling) (McGraw-Hill, New York 1949), ch. 2.

19 Ya.L. Al’pert, A.V. Gurevich, and L.P. Pitaevskii, Space Physics with Artificial Satellites (Plenum Press, New York, 1965).

20 Ira B. Bernstein and Irving N. Rabinowitz, The Physics of Fluids 2, 112, (1959).

21 J. Laframboise, Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, (Maxwellian Plasma at Rest. Ph.D. thesis, University of Toronto, 1966).

22 J.E. Allen, R.L.F. Boyd and P. Reynolds, Proc. Phys. Soc. 70, 297, (1957).

23 R.V. Kennedy and J.E. Allen J. Plasma Physics 69(6), 485-506, (2003).

24 S.A. Khrapak and G. Morll, Phys. Plasmas. 8(6), 2629-2634, (2001).

25 G.L. Delzanno, A. Bruno, G. Sorasio and G. Lapenta, Physics of Plasmas. 12, 062102, (2005).

26 A.A. Samarian, O.S. Vaulina, A.P. Nefedov, V.E. Fortov, B.W. James and O.F. Petrov, Phys.Rev.E. 64, 056407- 1 – 056407- 8 (2001).

27 Gian Luca Delzanno and Xian-Zhu Tang, PRL 113, 035002, (2014).

28 A. Autricque, S.A. Khrapak, L. Couedel, N. Fedorczak, C. Arnas, J.-M. Layet, and C. Grisolia, Physics of Plasmas 25, 063701, (2018).

29 J Goree, Plasma Sources Sci. Technol. 3, 400-406, (1994).

30 S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, and V.E. Fortov, Phys. Rev. E. 72, 016406-1-016406-10, (2005).

31 A. Barkan, N. D'Angelo, and R.L. Merlino, P.R.L. 73(23), 3093-3096, (1994).

32 A.V. Zobnin, A.P. Nefedov, V.A. Sinel’shchikov, V.E. Fortov, JETP 91(3), 483-487 (2000).

33 M. Lampe, V. Gavrishchaka, G. Ganduli and G.Joyce, P.R.L. 86(23), 5278-5281, (2001).

34 Xian-Zhu Tang and Gian Luca Delzanno, Physics of Plasmas 21, 123708 (2014).

35 Themis Matsoukas and Marc Russell, J. Appl. Phys. 77 (9). 4285-4292, (1995).

36 A.E. Davletov, Yu.V. Arkhipov, and I.M. Tkachenko, Contrib. Plasma Phys. 56 (3-4), 308 – 320 (2016).

37 A.E. Davletov, L.T. Yerimbetova, Y.S. Mukhametkarimov and A.K. Ospanova, Physics of Plasmas 21 (7), 073704, (2014).

Downloads

How to Cite

Davletov, A., Kurbanov, F., & Mukhametkarimov, Y. (2018). A chemical model of a three-component dusty plasma. Recent Contributions to Physics (Rec.Contr.Phys.), 66(3), 30–38. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/778

Most read articles by the same author(s)