Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials

Authors

  • S.K. Kodanova IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Т.S. Ramazanov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D.H.H. Hoffmann Technical University Darmstadt, Institute of Nuclear Physics, Germany, Darmstadt
  • M.K. Issanova IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Zh.A. Moldabekov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
        156 33

Keywords:

dense plasma, Coulomb logarithm, effective potentials, relaxation time of temperature

Abstract

In this paper the relaxation properties of non-isothermal dense plasmas were studied. The dense plasma is considered for which quantum effects must be taken into account at short distances. Based on the effective interaction potentials between particles, the Coulomb logarithm for two-temperature non-isothermal dense plasmas was obtained. To obtain the Coulomb logarithm the scattering angle was calculated in binary collision approximation. These potentials take into consideration long-range multi-particle screening effects and short-range quantum-mechanical effects in two-temperature plasmas. The relaxation processes in such plasmas were studied using the Coulomb logarithm. The relaxation times of the temperature in the plasma were calculated for different density values on the basis of the Coulomb logarithm using the effective potential. The obtained results were compared with theoretical works of other authors and with the results of molecular dynamics simulation.

References

1. Tahir N.A. et al. Three-dimensional thermal simulations of thin solid carbon foils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI // Phys. Rev. ST Accel. Beams.-2014.-Vol. 17. P.041003.

2. Ebeling W., Redmer R., Reinholz H., Roepke G. Thermodynamics and Phase Transitions in Dense Hydrogen - the Role of Bound State Energy Shifts // Contrib. Plasma Phys.-2008.-Vol. 48. p.670-685.

3. Tahir N.A., Stőhlker Th., Shutov A., Lomonosov I.V., Fortov V.E., French M., Nettelmann N., Redmer R., Piriz A.R., Deutsch C., Zhao Y., H. Xu, G. Xio and P. Zhan. Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics // New Journal of Physics.-2010.-Vol. 12. P.073022.

4. Glosli J.N. et al. Molecular dynamics simulations of temperature equilibration in dense hydrogen // Phys. Rev. E.-2008.-Vol. 78. P.025401.

5. Dimonte G., Daligault J. Molecular-dynamics simulations of electron-ion temperature relaxation in a classical Coulomb plasma // Phys. Rev. Lett.-2008.-Vol. 10. P.135001.

6. Benedict L.X., et al. Molecular Dynamics Simulations of Electron-Ion Temperature Equilibration in an SF6 Plasma // Phys. Rev. Lett.-2009.-Vol. 102. P.205004.

7. Brown L.S., Preston D.L., and Singleton R.L.. Charged particle motion in a highly ionized plasma // Jr., Phys. Rep.-2005.-Vol. 410. P.237.

8. Dharma-wardana M.W.C. Quantum corrections and bound-state effects in the energy relaxation of hot dense hydrogen // Phys. Rev. Lett.-2008.-Vol.101. P.035002.

9. Spitzer L. Physics of Fully Ionized Gase. – Interscience: N.Y.-1967. P. 586.

10. Gericke D.O., Murillo M.S., Schlanges M. Dense plasma temperature equilibration in the binary collision approximation // Phys. Rev. E.-2002.-Vol. 65. P.036418.

11. Vorberger J., Gericke D.O. Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas // Phys. Plasma.-2009. Vol. 16. P.082702.

12. Vorberger, D.O. Gericke. Comparison of electron-ion energy transfer in dense plasmas obtained from numerical simulations and quantum kinetic theory // High Energy Density Physics.-2014.-Vol.10. p.1-8.

13. Ramazanov T.S., Dzhumagulova K.N. Effective screened potentials of strongly coupled semiclassical plasma // Phys. Plasmas.-Vol. 9. p. 3758-3761.

14. Deutsch C. Nodal expansion in a real matter plasma // Phys. Lett. A.-1977.-Vol. 60. - P. 317-318.

15. Seuferling P., Vogel J., and Toepffer C. Correlations in a 2-temperature plasma // Phys. Rev. A.-1989.-Vol. 40. - P. 323-329.

16. Bredow R., Bornath Th., Kraeft W.D., Redmer R. Hypernetted Chain Calculations for Multi-Component and NonEquilibrium Plasmas // Contrib. Plasma Phys.-2013.-Vol. 53. - P.276-284.

17. Deutsch C. Equilibrium properties of 2-component classical plasmas // Ann.Phys.-1978.-Vol. 115. - P. 404-441.

18. Ordonez C.A., Molina M.I. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb potentials // Phys. Plasmas.-1994.-Vol. 1. - P.2515.

19. Ramazanov T.S., Kodanova S.K. Coulomb logarithm of a nonideal plasma // Phys. Plasmas.-2001.-Vol.8. - P.5049.

20. Ramazanov T.S., Kodanova S.K., Moldabekov Zh.A., Issanova M.K. Dynamical properties of non-ideal plasma on the basis of effective potentials // Phys. Plasmas.-2013.- Vol. 20. - P.112702.

21. Ramazanov T.S., Moldabekov Zh.A., Gabdullin M.T., Ismagambetova T.N. Interaction potentials and thermodynamic properties of two component semiclassical plasma // Phys. Plasmas.-2014.-Vol. 21. - P. 012706.

22. Murillo M.S., Dharma-wardana M.W.C. Temperature relaxation in hot dense hydrogen // Phys. Rev. Lett.-2008.-Vol.100. - P. 205005.

Downloads

How to Cite

Kodanova, S., Ramazanov Т., Hoffmann, D., Issanova, M., & Moldabekov, Z. (2014). Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials. Recent Contributions to Physics (Rec.Contr.Phys.), 51(4), 77–84. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/853

Most read articles by the same author(s)

1 2 > >>