The structure of silicon carbide films synthesized by magnetron sputtering
Keywords:
Silicon, semiconductor, silicon carbide, crystallization, magnetron sputteringAbstract
This paper is devoted to the synthesis of solid silicon carbide (SiCx) films on the surface of single-crystal silicon (c-Si) with a thin interlayer of amorphous silicon (a-Si) by magnetron sputtering and to establish new regularities in the influence of heat treatment on composition, crystallization processes and structure of layers. A principal difference between this method of synthesis and the traditionally used magnetron sputtering is the 13.56 MHz high-frequency magnetron sputtering of a silicon target and a graphite target. In the deposition mode: rf - 150 W, 13.56 MHz; Ar - 2.4 l/h, 0.4 Pa; 100°C, 10800 s, an amorphous SiСх film with a high density of ~ 3.52 g/cm3 containing nanoclusters with a predominance of shortened SiC bonds absorbing at 860 cm-1, was obtained. Rapid annealing (970°С, 5 min, vacuum) leads to partial disintegration of clusters, an improvement in the structure of the film, the formation of α-SiC, β-SiC and Si nanocrystals and a decrease in the density of the film. Based on the data of X-ray diffraction and density of the film (3,522 and 3,397 g/cm3 before and after annealing, respectively), it was suggested that there are inclusions of diamond and dense clusters.
References
2 S.J. Zinkle and G.S. Was, Acta Materialia. 61, 735-758 (2013).
3 K. Oguri and T. Sekigawa, US Patent № US 2004/0180242 A1.
4 D. Chen, S.P. Wong, Sh. Yang, and D.Mо, Thin Solid Films 426, 1-7 (2003).
5 Y. Liangdeng, S. Intarasiri, T. Kamwanna, and S. Singkarat, Ion beam applications in surface and bulk modification of insulators, (Austria, Vienna, 2008), 63 p.
6 S.A. Kukushkin and A.V. Osipov, J. Phys. D Appl. Phys. 47, 313001-313041. (2014).
7 S.A. Kukushkin and A.V. Osipov, Phys. Solid State. 50 (7), 1238-1245 (2008).
8 K.Kh. Nussupov, N.B. Beisenkhanov, I.V. Valitova, K.A. Mit’, D.M. Mukhamedshina, and E.A. Dmitrieva, J. of Materials Science: Materials in Electronics, 19, 254-262 (2008).
9 K.Kh. Nussupov, N.B. Beisenkhanov, S.K. Zharikov, I.K. Beisembetov, B.K. Kenzhaliev, T.K. Akhmetov, and B.Zh. Seitov, Phys. Solid State 56 (11), 2307-2321 (2014).
10 I.K. Beisembetov, K.Kh. Nusupov, N.B. Beisenkhanov, S.K. Zharikov, B.K. Kenzhaliev, T.K. Akhmetov, and B.Zh. Seitov, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 9 (2), 392-399 (2015).
11 K. Volz, M. Kiuchi, M. Okumura, and W. Ensinger, Surface and Coatings Technology, 128–129, 274-279 (2000).
12 Y. Sun, T. Miyasato, J.K. Wigmore, N. Sonoda, and Y. Watari, Journal of Applied Physics, 82 (5), 2334-2341 (1997).
13 S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, Phys. Solid State, 56(8), 1507-1535 (2014).
14 S.A. Kukushkin, K.Kh. Nusupov, A.V. Osipov, N.B. Beisenkhanov and D.I. Bakranova, Phys.Solid State, 59(5), 1014–1026 (2017).
15 S.A. Kukushkin, K.Kh. Nussupov, A.V. Osipov, N.B. Beisenkhanov and D.I. Bakranova, Superlattices and Microstructures, 111, 899-911 (2017).
16 V.I. Perekrestov, A.S. Kornyushchenko, I.V. Zahaiko, J. Nano- Electron. Phys., 7 (2), 02016 (2015). (in Russ.).
17 S.M. Rajab, I.C. Oliveira, M. Massi, H.S. Maciel, S.G. dos Santos Filho, and R.D. Mansano, Thin Solid Films, 515, 170-175 (2006).
18 Y.M. Lei, Y.H. Yu, C.X. Ren, S.C. Zou, D.H. Chen, S.P. Wong, and I.H. Wilson, Thin Solid Films, 365, 53-57 (2000).
19 Y.-H. Joung, H.I. Kang, J.H. Kim, H.-S. Lee, J. Lee, and W.S.Choi, Nanoscale Res. Lett., 7(1), 22 (2012).
20 A.G. Touryanski, A.V. Vinogradov, and I.V. Pirshin, US Patent No. 6041098 (2000).
21 H. Mutschke, A.C. Andersen, D. Clément, and T. Peiter Henning, Astron.Astrophys, 345, 187-202 (1999).
22 G. Henita and R.Rol, Silicon carbide (Moscow: Mir, 1972), 349 p. (in Russ.).
23 C.M. Parish, T. Koyanagi, S. Kondo, and Y. Katoh, Sci Rep., 7, 1198 (2017).
24 S. Meher, I.J. Rooyen, and T.M. Lillo, Sci Rep. 8, 98 (2018).
25 B.L. Henke, E.M. Gullikson, and J.C. Davis, Atomic Data and Nuclear Data Tables, 54 (2), 181 (1993).