Composition of dense beryllium plasmas
Keywords:
non-ideal plasma, effective potentials, ionization equilibrium, plasma composition.Abstract
In the present paper the composition of dense beryllium plasma by solving the Saha equations with corrections due to non-ideality was investigated. The lowering of the ionization potentials is calculated on the basis of effective potentials by taking into account screening and quantum diffraction effects. The contribution from the polarization of neutral atoms was calculated via the linearized virial coefficient for the interaction of electrons with atoms. The number density varies in the range 18 23 3 10 10 e n cm and the temperature domain considered here is 4 6 T 10 10 K. In considered range of density and temperature the plasma changes from atom state to full ionized plasma with the maximum degree of ionization. The ionization degree was determined as relation between the number density of free electrons to number density of nuclear in plasma. The composition of dense beryllium plasma, which consists of electrons, ions, and atoms, was considered on the basis of chemical model. Obtained system of nonlinear Saha equations was calculated by numerical methods.References
1 Frontiers in High Energy Density Physics, edited by the National Research Council (National Academic Press, Washington, 2003).
2 Redmer R.A., Röpke G., Morales F., Kilimann K. // Phys. Fluids B 2. – 1990. – P.390.
3 Ebeling W., Förster A., Fortov V.E., Gryaznov V.K., and Polishchuk A.Y. Thermophysical Properties of Hot Dense Plasmas. – Teubner Verlag, Stuttgart-Leipzig, 1991.
4 Zaghloul M.R. // Phys. Plasmas, 2003. – Vol. 10. – P. 527.
5 Zaghloul M.R. Reduced formulation and efficient algorithm for the determination of equilibrium composition and partition functions of ideal and nonideal complex plasma mixtures // Phys. Rev. E, 2004. – Vol. 69. – P. 026702.
6 Harris G.M., Roberts J.E., and Trulio J.G. Equilibrium properties of a partially ionized plasma // Phys. Rev., 1960. – Vol. 119. – P. 1832-1841.
7 Mihalas D., Däppen W., Hummer D.G. The equation of state for stellar envelopes // Astrophys. J., 1988. – Vol. 331. – P.794- 815.
8 Potekhin A.Y., Chabrier G. Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase// Phys. Rev. E, 2000. – Vol. 62. – P. 8554.
9 Zaghloul M.R. ntegrability criterion for lowering of ionization potentials and formulation of the solution of the inverse problem of constructing consistent thermodynamic functions of nonideal plasmas // Phys. Rev. E, 2009. – Vol. 79. – P. 016410.
10 Aparicio J.M., Chabrier G. Free-energy model for fluid atomic helium at high density// Phys. Rev. E, 1994. – Vol. 50. – P. 4948-4960.
11 Winisdoerffer C., Chabrier G. Free-energy model for fluid helium at high density // Phys. Rev. E, 2005. – Vol. 71. – P. 026402.
12 Saumon D., Chabrier G., Van Horn H.M. An equation of state for low-mass stars and giant planets // Astrophys. J., Suppl. Ser. – 1995. – V. 99. – P.713-741.
13 Potekhin A.Y., Massacrier G., Chabrier G. Equation of state for partially ionized carbon at high temperatures // Phys. Rev. E. – 2005. – V. 62. – P. 046402.
14 Ramazanov T.S., Dzhumagulova K.N. Effective screened potentials of strongly coupled semiclassical plasma. // Phys. Plasmas. 2002, vol.9, No.9, P. 3758-3761.
15 Ramazanov T.S., K.N.Dzhumagulova, M.T.Gabdullin. Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma. // Phys. Plasmas. – 2010. – Vol. 17, No.4. – P. 042703 (6 pp).
16 Ramazanov T.S., Dzhumagulova K.N., Omarbakiyeva Yu.A.. Effective polarization interaction potentials “charge-atom” for partially ionized plasma. // Phys. Plasmas, 2005, 12, №9, 092702-1-4.
17 Redmer R. Electrical conductivity of dense metal plasmas // Phys.Rev. 1998. - Vol.59, No.1. - P.1073-1081.
18 Kuhlbrodt S., Redmer R. Transport coefficients for dense metal plasmas // Phys. Rev. E. – 2000. – Vol. 62. – P. 7191-7200.
19 Smirnov B.M. Physics of atom and ion. – M.: Nauka, 1986.
20 Ebeling W., Kraeft W.-D., Kremp D., Theory of bound states and ionization equilibrium in plasmas and solids. - Berlin: Akademie-Verlag, 1976.
21 Redmer R. Thermodynamic and transport properties of dense, low-temperature plasmas // Phys. Rep. – 1997. – Vol. 282. – P. 35-157.
22 Redmer R., Röpke G. // Contrib. Plasma Phys. – 1989. – Vol. 29. – P. 343.
23 Kerley G.I. Theory of Ionization Equilibrium: An Approximation for the Single Element Case // J. Chem. Phys. – 1986. – Vol.85, № 9. – P. 5228-5231.
24 Kuhlbrodt S., Holst B., Redmer R. COMPTRA04 a Program Package to Calculate Composition and Transport Coefficients in Dense Plasmas // Contrib. Plasma Phys. – 2005. – V. 45, N. 2. – P.73-88.
2 Redmer R.A., Röpke G., Morales F., Kilimann K. // Phys. Fluids B 2. – 1990. – P.390.
3 Ebeling W., Förster A., Fortov V.E., Gryaznov V.K., and Polishchuk A.Y. Thermophysical Properties of Hot Dense Plasmas. – Teubner Verlag, Stuttgart-Leipzig, 1991.
4 Zaghloul M.R. // Phys. Plasmas, 2003. – Vol. 10. – P. 527.
5 Zaghloul M.R. Reduced formulation and efficient algorithm for the determination of equilibrium composition and partition functions of ideal and nonideal complex plasma mixtures // Phys. Rev. E, 2004. – Vol. 69. – P. 026702.
6 Harris G.M., Roberts J.E., and Trulio J.G. Equilibrium properties of a partially ionized plasma // Phys. Rev., 1960. – Vol. 119. – P. 1832-1841.
7 Mihalas D., Däppen W., Hummer D.G. The equation of state for stellar envelopes // Astrophys. J., 1988. – Vol. 331. – P.794- 815.
8 Potekhin A.Y., Chabrier G. Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase// Phys. Rev. E, 2000. – Vol. 62. – P. 8554.
9 Zaghloul M.R. ntegrability criterion for lowering of ionization potentials and formulation of the solution of the inverse problem of constructing consistent thermodynamic functions of nonideal plasmas // Phys. Rev. E, 2009. – Vol. 79. – P. 016410.
10 Aparicio J.M., Chabrier G. Free-energy model for fluid atomic helium at high density// Phys. Rev. E, 1994. – Vol. 50. – P. 4948-4960.
11 Winisdoerffer C., Chabrier G. Free-energy model for fluid helium at high density // Phys. Rev. E, 2005. – Vol. 71. – P. 026402.
12 Saumon D., Chabrier G., Van Horn H.M. An equation of state for low-mass stars and giant planets // Astrophys. J., Suppl. Ser. – 1995. – V. 99. – P.713-741.
13 Potekhin A.Y., Massacrier G., Chabrier G. Equation of state for partially ionized carbon at high temperatures // Phys. Rev. E. – 2005. – V. 62. – P. 046402.
14 Ramazanov T.S., Dzhumagulova K.N. Effective screened potentials of strongly coupled semiclassical plasma. // Phys. Plasmas. 2002, vol.9, No.9, P. 3758-3761.
15 Ramazanov T.S., K.N.Dzhumagulova, M.T.Gabdullin. Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma. // Phys. Plasmas. – 2010. – Vol. 17, No.4. – P. 042703 (6 pp).
16 Ramazanov T.S., Dzhumagulova K.N., Omarbakiyeva Yu.A.. Effective polarization interaction potentials “charge-atom” for partially ionized plasma. // Phys. Plasmas, 2005, 12, №9, 092702-1-4.
17 Redmer R. Electrical conductivity of dense metal plasmas // Phys.Rev. 1998. - Vol.59, No.1. - P.1073-1081.
18 Kuhlbrodt S., Redmer R. Transport coefficients for dense metal plasmas // Phys. Rev. E. – 2000. – Vol. 62. – P. 7191-7200.
19 Smirnov B.M. Physics of atom and ion. – M.: Nauka, 1986.
20 Ebeling W., Kraeft W.-D., Kremp D., Theory of bound states and ionization equilibrium in plasmas and solids. - Berlin: Akademie-Verlag, 1976.
21 Redmer R. Thermodynamic and transport properties of dense, low-temperature plasmas // Phys. Rep. – 1997. – Vol. 282. – P. 35-157.
22 Redmer R., Röpke G. // Contrib. Plasma Phys. – 1989. – Vol. 29. – P. 343.
23 Kerley G.I. Theory of Ionization Equilibrium: An Approximation for the Single Element Case // J. Chem. Phys. – 1986. – Vol.85, № 9. – P. 5228-5231.
24 Kuhlbrodt S., Holst B., Redmer R. COMPTRA04 a Program Package to Calculate Composition and Transport Coefficients in Dense Plasmas // Contrib. Plasma Phys. – 2005. – V. 45, N. 2. – P.73-88.
Downloads
How to Cite
Gabdullin, M. T., Ramazanov, T. S., Akhtanova, G. B., & Redmer, R. (2013). Composition of dense beryllium plasmas. Recent Contributions to Physics (Rec.Contr.Phys.), 46(3), 3–8. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/92
Issue
Section
Plasma Physics