The Pair correlation functions of a dense hydrogen plasma

Authors

  • T.N. Ismagambetova IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • M.Т. Gabdullin Kazakh-British Technical University, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/rcph-2019-1-1087
        83 61

Keywords:

non-ideal plasma, pair correlation functions

Abstract

The structural properties of a dense non-ideal hydrogen plasma were investigated. The interaction potentials of particles, taking into account the quantum-mechanical effects of diffraction and symmetry, were used as an interaction model. The electron-electron pair correlation functions were obtained by solving the Ornstein-Zernike integral equation in the hypernetted-chain approximation based on the interaction potentials. The quantum mechanical symmetry effect was considered for different directions of electron spins. The symmetry effect takes into account the Pauli exclusion principle. The effect of the symmetry effect as a quantum mechanical effect is more pronounced at small distances and in a denser plasma. The antiparallel direction of electron spins increases the probability of finding electrons at a distance R from each other, the parallel direction reduces this probability due to the prohibition of the presence of two electrons with identical spins in the same state. The results of this work were compared with the results of the classical comparison method (“classical mapping”). The main idea of the classical comparison is to establish the relationship between the quantum and reference classical systems, such that the structure of the classical system is the same as that of the quantum system in question. The results of this paper show good agreement with the results of the classical mapping in the hypernetted-chain approximation with the bridge function and computer simulation.

References

1 Zh.A. Moldabekov, T.S. Ramazanov, K.N. Dzhumagulova, Contrib.Plasma Phys. 52, 207-210 (2012).

2 T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, and T.N. Ismagambetova, Phys. Plasmas 21, 012706 (2014).

3 M.T. Gabdullin, T.S. Ramazanov, M.M. Muratov, T.N. Ismagambetova, G.B. Akhtanova, and J.A. Goree, Contrib. Plasma Phys. 55 (5), 366-372 (2015).

4 D.L. Goodstein States of Matter (Dover publications, Inc., 2002), 512 p.

5 S. Dutta, and J. Dufty, Phys. Rev. E 87, 032101 (2013).

6 Y. Liu, and J. Wu, The Journal of Chemical Physics 140, 084103 (2014).

7 Q. H. Du, D. Beglov, and B. Roux, J. Phys. Chem. B 104, 796 (2000).

8 P. Ballone, G. Pastore, G. Galli, and D. Gazzillo, Mol. Phys. 59, 275 (1986).

9 D. M. Duh and D. Henderson, J. Chem. Phys. 104, 6742 (1996).

10 A. Kovalenko and F. Hirata, J. Chem. Phys. 113, 2793 (2000).

11 S. Zhao, P. Feng, and J. Wu, Chem. Phys. Lett. 556, 336 (2013).

12 Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).

13 E. Kierlik and M. L. Rosinberg, Phys. Rev. A 44, 5025 (1991).

14 H. Lowen, Phys. Rep.-Rev. Sec. Phys. Lett. 237, 249 (1994).

15 Y.X. Yu and J.Z. Wu, J. Chem. Phys. 117, 10156 (2002).

16 S. Dutta and J. Dufty, Europhys. Lett. 102, 67005 (2013).

17 E. W. Brown, B. K. Clark, J. L. DuBois, and D. M. Ceperley, Phys. Rev. Lett. 110, 146405 (2013).

18 S. Dutta, and J. Dufty, Phys. Rev. E 87, 032102 (2013).

19 M. W. C. Dharma-Wardana, and F. Perrot, Phys. Rev. Lett. 84, 959 (2000).

20 M.W.C. Dharma-wardana, Phys. Rev. B 72, 125339 (2005).

21 M.W.C. Dharma-wardana, F. Perrot, Europhys. Lett. 63, 660 (2003).

22 M.W.C. Dharma-wardana, M.S. Murillo, Phys. Rev. E 77, 026401 (2008).

23 M.W.C. Dharma-wardana, F. Perrot, Phys. Rev. B 66, 14110 (2002).

24 M. W. C. Dharma-Wardana, Int. J. Quantum Chem. 112, 53 (2012).

25 Perrot F. and Dharma-Wardana M. W. C., Phys. Rev. B. 62, 16536 (2000).

Downloads

How to Cite

Ismagambetova, T., & Gabdullin, M. (2019). The Pair correlation functions of a dense hydrogen plasma. Recent Contributions to Physics (Rec.Contr.Phys.), 68(1), 30–36. https://doi.org/10.26577/rcph-2019-1-1087