Dust levitation over the moon surface
DOI:
https://doi.org/10.26577/rcph-2019-i2-7Keywords:
lunar regolith, plasma-dust layer, levitationAbstract
Determining the mechanisms of formation of lunar dust, the study of the dynamics and interaction of dust particles with plasma and with the surface of spacecraft are relevant, while there are several theoretical models for studying the formation of a plasma-dust sheath above the surface of the moon.
The article presents a brief review of studies that have investigated the dynamics of dust particles in the plasma sheath above the lunar surface. A computational model of the dynamics of dust particles levitating above the surface of the moon was created on the basis of the molecular dynamics simulations. The distribution of the dust particle sшяу has been determined. We consider the physical conditions such as - the density of the regolith, particle size, parameters (density, temperature of electrons and ions, velocity) of the solar wind, which characterize the dynamics of dust particles near the lunar surface. Charging of dust particles was calculated taking into account the density of electrons, solar wind ions and photoelectrons in the orbital motion limited. The graph of the dust particle charge versus time is plotted. The processes of charging dust particles in a plasma medium near the surface of the moon can lead to levitation and the transport of dust particles across the surface of the moon under the influence of a gravitational and electric fields.
References
2 S.I. Popel, A.P. Golub, L.M. Zelenyi, M. Horanyi, JETP Letters, 105, 594-599 (2017). (in Russ).
3 M. Horanyi, J. R. Szalay, S. Kempf, J. Schmidt , E. Grun, R. Srama, Z. Sternovsky, Nature 522, 324 -326 (2015).
4 E.A. Lisin, V.P. Tarakanov, O.P. Petrov, S.I. Popel, G.G. Dolnikov, A.V. Zakharov, L.M. Zeleny, V.E. Fortov. JETP Letters. 98(11), 755–761(2013). (in Russ).
5 X.Wang, M. Horányi and S. Robertson. J. Geophys. Res. 115(A11), A11102 (2010).
6 N.N. Skvortsova, S.A. Mayorov, D.V. Malakhov, V.D. Stepakhin, E.A.Obraztsova, A.I. Kenzhebekova, O.S. Shishilov. JETP Letters, 109(7), 452–459 (2019). (in Russ).
7 Stubbs T. J., Halekas J.S., Farrell W. M. and Vondrak R. Lunar surface charging: a global perspective using lunar prospector data, Workshop on dust in planetary systems (Kaua‘i, Hawai‘I, September 26–30,2005), 139-140.
8 R.C. Elphic, G. T. Delory, B. P. Hine et al., Space Sci. Rev., 185, 128 (2014).
9 B.R. De, D.R. Criswell, J. Geophys. Res., 82(7), 999-1004 (1977).
10 B. R. De, D.R. Criswell, J. Geophys. Res., 82(7), 1005-1007 (1977).
11 J.E. Colwell, S. Batiste, M. Horányi, S. Robertson and S. Sture, Reviews of Geophysics, 45(2), RG2006 (2007).
12 J.E. Colwell, A. Gulbis, M. Horányi, S. Robertson, Icarus 175(1), 159-169 (2005).
13 T. Nitter, O. Havnes, F. Melandso, Journal of Geophysical Research atmospheres 103(A4), 6605-6620 (1998).
14 T. Nitter, O. Havnes, Earth Moon and Planets 56(1), 7-34 (1992).
15 T. Nitter, T. K. Aslaksen, T. K., F. Melandso, ,O.Havnes, IEEE Trans. Plasma Sci., 22(2), 159–172 (1994).
16 A. Poppe, M. Horányi, J. Geophys. Res., 115, A08106, (2010).
17 M. Horanyi, Annu. Rev. Astron. Astrophys., 34, 383–418 (1996).
18 T. J. Stubbs, R.R. Vondrak and W.M. Farrell, Adv.Space Res., 37 (1). 59–66 (2006).
19 S.I. Popel, S.I. Kopnin, A.P. Golub, Yu.N. Izvekova, Solar System Research 47(6), 419-29 (2013).
20 S.I. Popel, A.P. Golub , Yu.N. Izvekova , V.V. Afonin , G.G. Dolnikov , A.V. Zakharov, L.M. Zelenyi, E.A. Lisin and O.F. Petrov. JETP Letters, 99(3), 115–120 (2014).
21 Ph.B. Bayimbetov, T.S. Ramazanov, Mathematical modeling in non-ideal plasma physics (Аlmaty, Gylym, 1994), 212. (in Russ).
22 L. Li, Y. T. Zhang, B. Zhou, Y.Y. Feng. Science China Earth Sciences, 59(10), 2053–2061 (2016).
23 J.P. Pabari, D. Banerjee. Current science, 110(10), 1984-1989 (2016).
24 X. Wang, J. Schwan, N. Hood, H.W. Hsu, E. Grün, M. Horányi, J. Vis. Exp. (134), e57072.
25 L.C.J. Heijmans, S.Nijdam. Physics of Plasmas, 23, 043703 (2016).