The orbital stability of relativistic three-body problem in the fremework of general relativity

Authors

  • A.Z. Talkhat Al-Farabi Kazakh National University, Kazakstan, Almaty
  • A.Zh. Abylayeva Al-Farabi Kazakh National University, Kazakstan, Almaty
  • A. Muratkhan Al-Farabi Kazakh National University, Kazakstan, Almaty

DOI:

https://doi.org/10.26577/rcph-2019-i2-8
        96 73

Keywords:

ЖСТ, үш дене есебі, айналмалы қозғалыс, квазидөңгелек орбита

Abstract

In this paper, the stability conditions of a quasi-circular orbit of a test body in the field of two rotating bodies in the framework of general theory of relativity are investigated. The position of the central body coincides with the reference point of coordinates, the second body is moving in circular orbit around a central body (first body), and without inner mass distribution. The test body moves in a perturbed circular orbit. The equations of translational motion of a test body with rotation components are studied. The initial angular velocity allows the Lagrange equation to be supplemented with a member responsible for the uniform rotation of the test body itself. The physical Interpretation of the phenomenon as close as possible to the actually observed. In turn, the equations of motion are complicated, which inevitably leads to the use of numerical methods of analysis. The equations of motion are averaged over time using asymptotic methods of nonlinear mechanics.

We confine ourselves to zero terms of expansion in powers of the relations of the sizes of bodies to their mutual distances.

References

1 G.N. Duboshin, Nebesnaya mekhanika. Osnovnyye zadachi i metody, (Moscow, Nauka, 1968), 799 p. (in Russ).

2 Sebehej V, Teorija orbit: ogranichennaja zadacha treh tel, (Moscow, Nauka, Glavnaja redakcija fizikomatematicheskoj literatury, 1968), 655 p. (in Russ).

3 A. Puankare, Izbrannye trudy v 3-h tomah, T.1 Nebesnaja mehanik, (Moscow, Nauka, 1971). (in Russ).

4 Kozlov V.V., UMN, 38(1), 3-67 (1983). (in Russ).

5 Abdil'din M.M., Mehanika teorii gravitacii Jejnshtejna, (Alma-Ata, 1988), 198 p. (in Russ).

6 Brumberg V.A., Reljativistskaja nebesnaja mehanika, (Moscow, 1972), 382 p. (in Russ).

7 Abdil'din M.M., O metrike vrashhajushhegosja zhidkogo shara. Voprosy teorii polja, (Alma-Ata, 1985), 20-25 p. (in Russ).

8 Landau L.D., Lifshic E.M. Mehanika, (Moscow, 1973), 207 p. (in Russ).

9 Abdil'din M.M., Problema dvizhenija tel v obshhej teorii otnositel'nosti, (Almaty: Qazaq universitetі), 2006, 132 p. (in Russ).

10 Hans C., Ohanian and Remo Ruffini, Gravitation and Spacetime, 3rd edn. (Cambridge University Press, 2013), 530 p.

11 Abishev M.E., Toktarbay S., and Zhami B.A., Gravitation and cosmology, 20(3), 149-151 (2014).

12 Abdil'din M.M., Mehanika teorii gravitacii Jejnshtejna, (Alma-Ata, 1988), 198 p. (in Russ).

13 Abdil'din M.M., Adiabaticheskaja teorija dvizhenija tel v OTO. Dvizhenie tel v reljativistskoj teorii gravitacii, Tezisy dokl. vtorogo vsesojuznogo simpoziuma, Vil'njus-Kaunas, 6-7 (1986). (in Russ).

14 Abdil'din M.M., Omarov M.S., Adiabaticheskaja teorija dvizhenija tel v OTO, Sovremennye teoreticheskie i jeksperimental'nye problemy teorii otnositel'nosti i gravitacii, Materialy VII Vsesojuznogo konf., Erevan, , 3-4 (1988). (in Russ).

15 Abdil'din M.M., Omarov M.S., Analiz korrektnoj metriki pervogo priblizhenija v metode Foka v OTO, Problemy fiziki zvezd i vnegalakticheskoj astronomii. (Almaty, 1993), 170-178 p. (in Russ).

16 Abdil'din M.M., Omarov M.S., Izvestija NAN RK, ser. fiz. -mat., 4, 17-21 (1994) (in Russ).

17 Abishev M.E., Toktarbaj S., Zhami B.A., Izvestija NAN RK, Ser. fiz.-mat., 2(294), 11-13 (2014) (in Russ).

18 Abishev M., Toktarbay S., Beissen N., Zhumazhanova D., Periodic solutions of the restricted three body problem in GR mechanics, Fourteenth Marcel Grossmann Meeting, MG14 University of Rome "La Sapienza", Rome, July 12-18, 2015.

19 Abishev M., Quevedo H., Toktarbay S., Zhami B., WSPC Proceedings, October 14, 2015. arXiv:1510.03703v1.

20 Abishev M.E., Toktarbay S., Ablayeva A.Zh., Talgat A.Z., Proc. of the 3rd Intern. Conf. "Astrophysics, Gravity and Cosmology", Astana, 83 – 85 (2016).

Downloads

How to Cite

Talkhat, A., Abylayeva, A., & Muratkhan, A. (2019). The orbital stability of relativistic three-body problem in the fremework of general relativity. Recent Contributions to Physics (Rec.Contr.Phys.), 69(2), 53–60. https://doi.org/10.26577/rcph-2019-i2-8

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics