The influence of acidity of the film-forming solution on the structure and properties of thin SnO2 films

Authors

  • E.A. Dmitriyeva Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • E.A. Grushevskaya Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • D.M. Mukhamedshina Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • K.A. Mit Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty
  • I.A. Lebedev Satbayev University, Institute of Physics and Technology, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/RCPh.2020.v72.i1.10
        124 55

Keywords:

thin films, tin dioxide SnO2, sol-gel method, acidity, surface structure, transmission spectra

Abstract

The paper considers the effect of acidity of film-forming solutions on the structure and optical properties of thin SnO2 films obtained by sol-gel method. For studying this, a series of solutions with a concentration of tin ions of 0.12 mol/l was prepared with the addition of a different amount of concentrated aqueous ammonia solution. An aqueous ammonia solution was used to regulate the pH level in the SnCl4/C2H5OH system. Solutions were applied to the substrate by a modified dipping method. The film was applied to one side of the substrate. The samples were dried in air for at least 30 minutes, then annealed in a muffle furnace at 400°C for 15 minutes. The structure of the films was studied using an optical microscope MPE-11. Transmission spectra were measured on a two-beam spectrophotometer SF-256 UVI (wavelength range 190-1200 nm.). During the experiment, a direct dependence of the formation of structures on the surface of the obtained films on the acidity of the initial solutions was revealed. With increasing pH, the growth of structures and a change in their shape were observed. The obtained results extend the fundamental knowledge in the field of development of methods for controlling the structure of thin SnO2 films, which is an important element in the creation of materials with improved functional properties.

References

1 L. Kavan, Catalysis Today 328, 50–56 (2019).

2 F.C. Vásquez, F. Paraguay-Delgado, et al, Superlattices and Microstructures 90, 274-287 (2016).

3 Dao K.C., Il'in A.A., et al, Iranian journal of catalysis 9(1), 1-9 (2019).

4 E.A. Dmitriyeva, D.M. Muhamedshina, et al, Rec.Contr.Phys., 2 (65), 68-75 (2018). (in Russ).

5 K.A. Mit', E.A. Dmitriyeva, et al, Belaja kniga po nanotehnologijam 2, 265-267 (2018). (in Russ).

6 E.A. Grushevskaya, E.A. Dmitriyeva, et al, Gorenie i plazmohimija, 16 (1), 15-23 (2018). (in Russ).

7 A. Cirocka, D. Zarzeczanska et al, Electrochimica Acta 313, 432-440 (2019). (in Russ).

8 M. Mohammadian M., S. Rashid-Nadimi and Peimanifard Z., J of Power Sources 426, 40-46 (2019).

9 Van Bui-Thi-Tuyet, Cannizzo C., Legros C., Andrieux M. and Chausse A., Surfaces and Interfaces 15, 110-116 (2019).

10 H. Hajibabaei, D.J. Little, A. Pandey, D.W. Wang, Z. Mi, and T.W. Hamann, ACS Applied Materials & Interfaces, 11 (17), 15457-15466 (2019).

11 A. Korjenic and K.S. Raja, J of the Electrochemical Society, 166 (6), 169-184 (2019).

12 Y. Dong, S. Komarneni, et al, J of Materials Chemistry A, 7(12), 6995-7005 (2019).

13 R. Alrammouz, J. Podlecki, et al, Sensors and Actuators A 284, 209–231 (2018).

14 A. Dey, Materials Science & Engineering B 229, 206–217 (2018).

15 I.H. Kadhim, H. Abu Hassan and Q.N. Abdullah, Nano-Micro Lett. 8(1), 20–28 (2016).

16 G. Fedorenko, L. Oleksenko, et al, Nanoscale Research Letters 12, 329 (2017).

17 E.V. Sokovykh, L.P. Oleksenko, et al, Nanoscale Research Letters 12(1), 383 (2017).

18 G. Korotcenkov, V. Brinzari and B.K. Cho, J of Sensors 3816094, 31 (2016).

19 Ji Hyun Um, Myounggeun Choi, et al, Scientific Reports 6, 18626 (2016).

20 Rui Li, Wei Xiao, et al, Ceramics International 45, 13530–13535 (2019).

21 Qingke Tan, Zhen Kong, et al, Applied Surface Science 485, 314–322 (2019).

22 S. Zhu, J. Liu and J. Sun, Applied Surface Science 484, 600–609 (2019).

23 H. Li, Q. Su, et al, Materials Letters 217, 276–280 (2018).

24 E.A. Grushevskaya, S.A. Ibraimova, et al, Eurasian chem.-technol. 21, 13-17 (2019).

25 T. Hyodo, Y. Takakura, et al, JNN, 19(8), 5351-5360 (2019).

26 V.Ja. Shevchenko, Issledovanie, tehnologija i ispol'zovanie nanoporistyh nositelej lekarstv v medicine (SPb, Himizdat, 2015), 368 p. (in Russ).

27 E.A. Dmitriyeva, D.M. Mukhamedshina, et al, News of the RK (series of geology and technical sciences) 433, 73–79 (2019).

28 D.A. Timoshenko, Zol'-gel' metod poluchenija gazochuvstvitel'nyh sloev dioksida olova (Saratov, Lad'ja, 2017), 150 p. (in Russ).

29 A.A. Eliseev, A.V. Lukashin, Funkcional'nye nanomaterialy, (Moscow, Fizmatlit, 2010), 456 p.

30 A.I. Maksimov, V.A. Moshnikov, Ju.M. Tairov, O.A. Shilova, Osnovy zol'-gel' tehnologii nanokompozitov (SPb, Jelmor, 2007), 255 p.

31 Y. Li, L. Xu, et al, Applied Surface Science, 256, 4543–4547 (2010).

32 D. Raoufi and T. Raoufi, Applied Surface Science 255, 5812–5817 (2009).

33 Pil Gyu Choi, Noriya Izu, et al, Sensors & Actuators: B. Chemical 296, 126655 (2019).

34 B. Wang, L. Deng, at al, Sensors and actuators B-chemical 276, 57-64 (2018).

35 T.V.K. Karthik, L. Martinez and V. Agarwal, J of Alloys and Compounds 731, 853-863, (2018).

36 X.Y. Wang, Y.P. Liu, et al, Sensors and actuators B-chemical 276, 211-221 (2018).

Downloads

How to Cite

Dmitriyeva, E., Grushevskaya, E., Mukhamedshina, D., Mit, K., & Lebedev, I. (2020). The influence of acidity of the film-forming solution on the structure and properties of thin SnO2 films. Recent Contributions to Physics (Rec.Contr.Phys.), 72(1), 81–88. https://doi.org/10.26577/RCPh.2020.v72.i1.10

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)