Microwave absorption and electromagnetic interference shielding properties of carbon black/MnNiZn ferrite nanocomposites-filled paraffin wax in the frequency range (8.8–12 GHz)

Microwave absorption behavior

Authors

DOI:

https://doi.org/10.26577/RCPh.2022.v81.i2.011
        172 88

Keywords:

MnNiZn ferrite, carbon black, Absorption bandwidth, Reflection loss, Shielding efficiency

Abstract

In this present work, we offer the design of good, wideband microwave absorption materials (MAMs) based on CB/Mn0.1Ni0.5Zn0.4Fe2O4 (carbon black/MnNiZn ferrite). The ferrite is prepared by a self-combustion method using sucrose as fuel. The chemical is utilized for the synthesis of carbon black nanopowder is carbon black powder (2–8 μm). Then, the operation is continued via mixing carbon black and MnNiZn ferrite through the grinding balls. Four various weight ratios of CB/Mn0.1Ni0.5Zn0.4Fe2O4 (1:0, 1:1, 2:1, and 3:1) with various thicknesses (2–4–6 mm) are prepared. X-ray diffractometry and FTIR spectroscopy are utilized in order to characterize samples. The morphology of the powders is investigated by SEM. The electromagnetic interference (EMI) shielding and microwave absorption properties are measured in the frequency band of 8.8–12 GHz to accomplish the practical characterization. The MAMs show broad bandwidths under -10 dB in the range of 0.3–3.2 GHz and reasonable surface density in the range of 2.91–3.66 kg/m2 with a weight ratio within a paraffin matrix of 40% w/w. The MAM shows a minimal reflection loss of -18.3 dB at the frequency of 11.4 GHz for the thickness of 2 mm. The maximum shielding efficiency is 18.5 dB at 11.5 GHz for 2 mm thickness of the CB/F-21 nanocomposite sample.

References

1 H. Lv, Z. Yang, S.J. H. Ong, C. Wei, H. Liao, S.Xi, Y. Du, G. Ji, and Z.J. Xu, Adv. Funct. Mater., 29, 1-8 (2019).

2 C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, and J. Gu Sci., Bull., 65, 616-622 (2020).

3 X. Chen, T. Shi, K. Zhong, G. Wu, and Y. Lu, Chem. Eng. J, 379, 122240 (2020).

4 S. Chen, G. Meng, B. Kong, B. Xiao, Z. Wang, Z. Jing, Y. Gao, G. Wu, H. Wang, and Y. Cheng, Chem. Eng. J, 387, 123662 (2020).

5 C. Cheng, Z. Chen, Z. Huang, C. Zhang, R. Tusiime, J. Zhou, Z. Sun, Y. Liu, M. Yu, and H. Zhang, Compos. Part A Appl. Sci. Manuf., 129, 105696 (2020).

6 H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, and L. Cheng, ACS Appl. Mater. Interfaces 11, 10198 (2019).

7 Y. Liu, X. Liu, and X. Wang, Adv. Appl. Ceram., 114, 82-86 (2015).

8 W. Ari Adi, Y. Yunasfi, M. Mashadi, D. Sahidin Winatapura, A. Mulyawan, Y. Sarwanto, Y. Edi Gunanto, and Y. Taryana, Electromagn Fields Waves, 1-18 (2019).

9 P.J. Liu, Z.J. Yao, V.M. H. Ng, J.T. Zhou, Z.H. Yang, and L.B. Kong, //Acta Metall. Sin. (English Lett. The Chinese Society for Metals), 31, 171-180 (2018).

10 T. Indrusiak, I.M. Pereira, A.P. Heitmann, J.G. Silva, Â.M.L. Denadai, and B.G. Soares //J. Mater. Sci. Mater. Electron., 31, 13118-13130 (2020).

11 K. Mondal, B. Balasubramaniam, A. Gupta, A.A. Lahcen, and M. Kwiatkowski //J. Nanotechnol, 2019, 10-12 (2019).

12 M. Kwiatkowski, A. Policicchio, M. Seredych, and T.J. Bandosz, Carbon N. Y., 98, 250-257 (2016).

13 T.H. Ting, R.P. Yu, and Y.N. Jau, Mater. Chem. Phys., 126, 364-370 (2011).

14 A. Houbi, A.A. Zharmenov, Y. Atassi, Z.T.Bagasharova, S. Mirzalieva, K.Kadyrakunov, J Magn Magn Mater., 529 167839 (2021).

15 L.T.Q. Anh and N. Van Dan, Appl. Phys. A Mater. Sci. Process., 126, 1-6 (2020).

16 V.K. Chakradhary and M.J. Akhtar, 2017 IEEE Asia Pacific Microwave Conference (APMC), 678-681 (2017).

17 A.M. El Nahrawy, H.S. El-Deen, A.A. Soliman, and W.M.M. Mosa, Egypt. J. Chem., 62, 925-957 (2019).

18 E. Hu, X. Hu, T. Liu, L. Fang, K.D. Dearn, and H. Xu, Wear, 304, 152-161 (2013).

19 S.B. Kondawar and A.I. Nandapure, J. Chinese Adv. Mater. Soc., 2, 186-198 (2014).

20 S.J. Figueroa Ramírez and M. Miranda-Hernánde, Int. J. Electrochem. Sci., 7, 150-166 (2012).

21 S.Y. Kim, S.H. Kwon, Y.D. Liu, J.S. Lee, C.Y. You, and H.J. Choi, J. Mater. Sci., 49, 1345-1352 (2014).

22 P. Verma, T. Bansala, S.S. Chauhan, D. Kumar, S. Deveci, and S. Kumar/ J. Mater. Sci., 56, 11769 (2021).

23 M. Bayat, H. Yang, F.K. Ko, D. Michelson, and A. Mei, Polymer (Guildf), 55, 936-943 (2014).

24 Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, and J. Joo, Rev. Sci. Instrum., 74, 1098 (2003).

25 S. Wang, Q. Jiao, Q. Shi, H. Zhu, T. Feng, Q. Lu, C. Feng, H. Li, D. Shi, and Y. Zhao, Ceram. Int., 46, 1002-1010 (2020).

26 R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi, Y. Liu, and M. Zheng, Chem. Eng. J., 384 123266 (2020).

27 R. Jaiswal, K. Agarwal, R. Kumar, R. Kumar, K. Mukhopadhyay, and N.E. Prasad, Soft Matter, 16, 6643 (2020).

28 N.N. Ali, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, and R.K.B. Almarjeh, J. Mater. Sci. Mater. Electron., 30, 6876-6887 (2019).

Downloads

How to Cite

Houbi, A., Atassi, Y., Zharmenov, A., Bagasharova, Z., Myrzalieva, S., Kadyrakunov, K., & Karibayev, B. (2022). Microwave absorption and electromagnetic interference shielding properties of carbon black/MnNiZn ferrite nanocomposites-filled paraffin wax in the frequency range (8.8–12 GHz): Microwave absorption behavior. Recent Contributions to Physics (Rec.Contr.Phys.), 81(2), 85–95. https://doi.org/10.26577/RCPh.2022.v81.i2.011

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)