IN SITU Raman analysis of electrochemical phenomena in carbon nanowalls

Authors

  • R.Ye. Institute of Applied Science and Information Technologies, Kazakhstan, Almaty
  • R.R. Institute of Applied Science and Information Technologies, Kazakhstan, Almaty; Kazakh-British Technical University, Almaty, Kazakhstan
  • Ye. Yerlanuly Institute of Applied Science and Information Technologies, Kazakhstan, Almaty; Kazakh-British Technical University, Almaty, Kazakhstan
  • М.Т. Kazakh-British Technical University, Almaty, Kazakhstan; Kazakh Physical Society, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/RCPh.2024v88i1a08

Keywords:

carbon nanowalls, in situ Raman spectroscopy, RI-PECVD, electrochemical reaction

Abstract

Carbon nanowalls (CNWs) are vertically oriented and interconnected graphene sheets. They are attracting growing interest as a new material for application in electrochemical sensing devices due to their high electrical and thermal conductivity, excellent electrocatalytic activity, large specific surface area and high sensitivity to various analytes. In this work, CNWs were synthesized on Ti\SiO2\Si substrates by radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD). The structural and morphological properties of the obtained CNWs were investigated by Raman spectroscopy and scanning electron microscopy. Cyclic voltammetry and chronoamperometry were used to analyze the electrochemical properties of the CNWs. The electrochemical properties of the CNWs were investigated in conjunction with in situ Raman spectroscopy. In situ Raman spectroscopy provides information on possible damage or disorder in the material and is an effective method to study phase transitions induced by temperature, pressure, or electrochemical reaction. The intentional applying of different values of voltages on the CNWs electrode allowed us to trigger electrochemical reactions, which we monitored with in situ Raman spectroscopy. The reactions were partially reversible, as indicated by the increase/decrease of the peak intensity ratio (I2D/IG).

References

M. Deluca, H. Hu, et al., Commun Mater. 4, 78 (2023).

R.R. Jones, D.C. Hooper, et al., Nanoscale Res Lett. 14, 231 (2019).

A. Orlando, F. Franceschini, et al., A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors. 9, 262 (2021).

J. Schwan, S. Ulrich, et al., J Appl Phys. 80, 440–447 (1996).

L.M. Malard, M.A. Pimenta, et al., Phys Rep. 473, 51–87 (2009).

M.S. Dresselhaus, G. Dresselhaus, et al., Phys Rep. 409, 47–99 (2005).

S. Kurita, A. Yoshimura, J Appl Phys. (2005).

J.-B. Wu, M.-L. Lin, et al., Chem Soc Rev. 47, 1822–1873 (2018).

M. Hiramatsu, M. Hori, Carbon Nanowalls, (Springer Vienna, Vienna, 2010).

F. Bohlooli, A.Yamatogi, S. Mori, Sens Biosensing Res. 31, 100392 (2021).

M. Tomatsu, M. Hiramatsu, Jpn J Appl Phys. 56, 06HF03 (2017).

F. Bohlooli, A. Anagri, S.Mori, Carbon, 196, 327–336 (2022).

R.Ye. Zhumadilov, Y.Yerlanuly, et al., Sens Biosensing Res. 43, 100614 (2024).

J.Z. Ou, J.L. Campbell, et al., The Journal of Physical Chemistry C. 115, 10757–10763 (2011).

H.-L. Wu, L.A. Huff, A.A. Gewirth, ACS Appl Mater Interfaces 7, 1709–1719 (2015).

H. Zhu, G. Yu, Energy & Fuels. 31, 5817–5827 (2017).

S. Liu, G. Zhang, Cryst Growth Des. 20, 6604–6609 (2020).

Y. Deng, .S.Yeo, ACS Catal. 7, 7873–7889 (2017).

A.J. Wain, M.A. O’Connell, Adv Phys X. 2, 188–209 (2017).

W. Zheng, Chemistry–Methods 3, (2023).

M. Bouša, O. Frank, et al., Physica Status Solidi (b). 250, 2662–2667 (2013).

M. Choi, J. Son, et al., Journal of Raman Spectroscopy. 45, 168–172 (2014).

J. Binder, J.M. Urban, et al., Nanotechnology 27, 045704 (2016).

Y. Yerlanuly, D. Christy, et al., Appl Surf Sci. 523, 146533 (2020).

S. Kondo, M. Hori, J of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26, 1294–1300 (2008).

H. Sugiura, L. Jia, Jpn J Appl Phys. 58, 030912 (2019).

K. Davami, M. Shaygan, et al., Carbon 72, 372–380 (2014).

R. Liu, Y. Chi, et al., J Nanosci Nanotechnol, 14(2), 1647-57 (2014).

N. Prieto‐Taboada, S. Fdez‐Ortiz de Vallejuelo, et al., J of Raman Spectroscopy 50, 175–183 (2019).

Z. Du, J. Chen, et al., Sensors 15, 12377–12388 (2015).

M. Parpal, A. El Sachat, et al., Diam Relat Mater. 141, 110541 (2024).

R. Yadav, P. Joshi, et al., Physical Chemistry Chemical Physics 23, 11789-11796 (2021).

F.T. Johra, J.-W. Lee, W.-G. Jung, J of Industrial and Engineering Chemistry 20, 2883–2887 (2014).

Downloads

Published

2024-03-19

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience