Density of thin films of cryovacuum condensates of methane

Authors

  • A.S. Drobyshev IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • D.Yu. Sokolov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A.K. Shinbayeva IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A.Y. Nurmukan IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • T.S. Duisebayev IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
        65 75

Keywords:

phase transition, cryocondesate, density, methane, temperature of condensation

Abstract

In this paper, the dependence of the density ρ of cryocondensates of methane CH4 from the condensation temperature T is studied. We propose to consider the results obtained directly during the cryocondensation of samples in a substantially nonequilibrium state. This work dedicated to attempt to clarify the nature of the non-equilibrium state. These values of the density ρ of methane CH4 with decreasing condensation temperature T undergoes rupture in the vicinity of the phase transition temperature associated with the freezing of degrees of freedom of a quarter of molecules. A slight decrease in the density of methane with decreasing condensation temperature associated with an increase in porosity of samples of solid methane with decreasing condensation temperature. The error in measuring the density ρ does not exceed 4-5% and is determined mainly by the error in measuring the residual pressure of gaseous methane in the calibration volume, and also by a random error. These results can be used in astrophysical research.

References

1. K.A. Clusius, Z. Phys. Chem. 3, 41-79, (1929).

2. H.M. James and T.A. Keenan, J. Chem. Phys. 31, 12-41, (1959).

3. J.H. Colwell, E.K. Gill and J.A. Morrison, J. Chem. Phys. 39, 635-653, (1963).

4. H A. Kruis, L. Popp and K. Clusius, Z. Elektrochem. 43(8), 664-666, (1937).

5. E. Bartholorne, G. Drikos and A. Eucken, Z. Phys. Chern. 39, 371-373, (1938).

6. A.I. Prokhvatilov and A.P. Isakina, Fizika nizkikh temperature 9, 419-427, (1983). (in Russ).

7. D.R. Baer, B.A. Fraass, D.H. Riehl and R.O. Simmons, J. Chem. Phys. 68 (4), 1411, (1978)
doi.org/10.1063/1.435960.

8. A.J. Nijman and N.J. Trappeniers, Physica B 95, 147-162, (1978).

9. P.A. Beckman, M. Bloom and I. Ozier, Can. Jour. of Phys., 45 (16), 1712, (1976). doi.org/10.1139/p76-204.

10. S. Buchman, D. Candela, W.T.Wetterling and R.V.Pound, Phys. Rev. B 26, 198-209, (1982).

11. C. Chapados and A. Cabana, Can. Jour. of Chem. 50, 3521-3533, (1972).

12. Y. Miyamoto, M. Fushitani, D. Ando and T. Momose, J. of Chem. Phys. 128, 14502, (2008). doi.org/10.1063/1.2889002.

13. M.I. Bagatskiy, V.G. Manzheliy, D.A. Mashchenko and V.V. Dudkin, Fizika nizkikh temperatur 29, 1352-1362, (2003).

14. M.I. Bagatskii, V.G. Manzhelii, I.Ya. Minchina and D.A. Mashchenko, I.A. Gospodarev, Jour. of Low Temp. Phys. 130 (516), 459, (2003). doi.org/10.1023/A:1022463618264.

15. E. Pisarska, P. Stachwiak and A. Jezowski, Fizika nizkich temp., 33 (6/7), 768, (2007).

16. V.G. Manzhelii and A.M. Tolkachev, Phys. Solid State 5, 3413-3419, (1963).

17. J. Martonchik and G. Orton, Applied Optics 12, 1-30, (1994).

18. W. H. Ramsey, Royal Astr. Soc. 125, 469-485, (1963).

19. J. Nijman and A.J. Berlinsky, Phys. Rev. Lett. 8, 408-411, (1977).

20. J. Nijman and A.J. Berlinsky, Can. Jour. of Phys. 58, 1049-1069, (1980).

21. E. Wood and J.A. Roux, J. Opt. Soc. 72, 720, (1982). doi.org/10.1364/JOSA.72.000720

Downloads

How to Cite

Drobyshev, A., Sokolov, D., Shinbayeva, A., Nurmukan, A., & Duisebayev, T. (2017). Density of thin films of cryovacuum condensates of methane. Recent Contributions to Physics (Rec.Contr.Phys.), 62(3), 10–16. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/553

Issue

Section

Thermal Physics and Theoretical Thermal Engineering