Methodology of quantum calculations

Authors

  • М.А. Zhusupov Al Farabi Kazakh National University, NIIETF, Department of Theoretical and Nuclear Physics, Almaty, Kazakhstan
  • D.А. Tursynbayeva KazNPU them. Abay, Department of Methods of Teaching Mathematics, Physics and Informatics, Almaty, Kazakhstan
  • К.А. Zhaksybekova Al Farabi Kazakh National University, NIIETF, Department of Theoretical and Nuclear Physics, Almaty, Kazakhstan
  • R.S. Kabatayeva Al Farabi Kazakh National University, NIIETF, Department of Theoretical and Nuclear Physics, Almaty, Kazakhstan
        103 51

Keywords:

conversion constant, fine structure constant, quantum calculation, subatomic units, hydrogen-like atom, interaction quantum, interaction radius

Abstract

In present article a methodology of conversion constant and fine structure constant’s use in quantum calculations is considered, knowledge of the methodology is necessary for young teachers and researchers in field of theoretical nuclear and atomic physics, and also for bachelor, master and PhD students. It is shown how using the conversion constant and fine structure constant one can do quantum calculations in such a way that to obtain as a result quantities of necessary dimensions. Several cases are considered, such as a calculation of energy levels and ionization energies of hydrogen-like atoms, calculation of radius of the first Bohr orbit for hydrogen-like atom, mass of strong interaction quanta and weak interaction radius, calculation of total and kinetic energies for relativistic particles. In a literature on subatomic physics there appear a lot of cases when without using these constants it is not possible to obtain orders and dimensions of quantities. The examples considered acquaintance the readers with micro-world units, and also give a deep understanding for those who have an experience in subatomic units. The fine structure constant is dimensionless, but it has a deep meaning since all fundamental properties and characteristics of micro-world objects are defined by this quantity.

References

1 L.V. Pacios, Computer Physics Communications, 67(2), 309-324, (1991).

2 N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M.H. Alexander, G. Capecchi, and H.J. Werner, Physical Review Letters, 91(1), 013201, (2003). DOI: 10.1103/PhysRevLett.91.013201.

3 G.P. Miroshnichenko, Journal of Experimental and Theoretical Physics, 112(6), 923-931, (2011). DOI:10.1134/S1063776111050141. 2011.

4 C. Simenel, P. Chomaz, G. de France, Physical Review Letters, 93(10), 102701, (2004). DOI:10.1103/PhysRevLett.93.102701.

5 S. Bovino, M. Wernli, F.A. Gianturco, Astrophysical Journal, 699(1), 383-387, (2009). DOI: 10.1088/0004-637X/699/1/383.

6 A. Costantini, N.F. Lago, A. Lagana, and F.A. Huarte-Larranaga, Computational Science and its Applications – ICCSA 2009, PT II. Lecture Notes in Computer Science, 5593, 104, (2009). International Conference on Computational Science and Its Applications (ICCSA 2009). Seoul, South Korea, 2009.

7 P. Deglmann, A. Schaefer, and C. Lennartz, International Journal of Quantum Chemistry, 115(3), 107-136, (2015). DOI:10.1002/qua.24811.

8 V. Potapov, S. Gushanskiy S., Guzik V., Polenov M., Software Engineering Trends and Techniques in Intelligent Systems, CSOC 2017, 3. Advances in Intelligent Systems and Computing, 575, 106-115, (2017). DOI: 10.1007/978-3-319-57141-6_12.

9 A.D. Suprun and L.V. Shmeleva, Nanoscale Research Letters, 11(74), (2016). DOI: 10.1186/s11671-016-1269-0.

10 M.A. Oliver, Foundations of Physics Letters, 4(4), 337-350, (1991). DOI: 10.1007/BF00665893.

11 V.М. Galitsky, B.М. Karnakov, and V.I. Kogan, Zadachi po kvantovoy mekhanike, uchebnoe posobie. (Мoscow, Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1981), 648 р.

12 Subatomnaya fizika. Pod redaktsiei B.S.Ishkhanova. (Moskva, MGU, 1994), 224 р. (in russ).

13 D. Perkins. Vvedenie v fiziku vysokih energiy. (Moskva, Energoatomizdat, 1991), 429 р. (in russ).

Downloads

How to Cite

Zhusupov М., Tursynbayeva, D., Zhaksybekova К., & Kabatayeva, R. (2017). Methodology of quantum calculations. Recent Contributions to Physics (Rec.Contr.Phys.), 63(4), 48–52. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/561

Issue

Section

Methods of teaching high school physics

Most read articles by the same author(s)

1 2 > >>