Methodology of quantum calculations
Keywords:
conversion constant, fine structure constant, quantum calculation, subatomic units, hydrogen-like atom, interaction quantum, interaction radiusAbstract
In present article a methodology of conversion constant and fine structure constant’s use in quantum calculations is considered, knowledge of the methodology is necessary for young teachers and researchers in field of theoretical nuclear and atomic physics, and also for bachelor, master and PhD students. It is shown how using the conversion constant and fine structure constant one can do quantum calculations in such a way that to obtain as a result quantities of necessary dimensions. Several cases are considered, such as a calculation of energy levels and ionization energies of hydrogen-like atoms, calculation of radius of the first Bohr orbit for hydrogen-like atom, mass of strong interaction quanta and weak interaction radius, calculation of total and kinetic energies for relativistic particles. In a literature on subatomic physics there appear a lot of cases when without using these constants it is not possible to obtain orders and dimensions of quantities. The examples considered acquaintance the readers with micro-world units, and also give a deep understanding for those who have an experience in subatomic units. The fine structure constant is dimensionless, but it has a deep meaning since all fundamental properties and characteristics of micro-world objects are defined by this quantity.
References
2 N. Balucani, D. Skouteris, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, M.H. Alexander, G. Capecchi, and H.J. Werner, Physical Review Letters, 91(1), 013201, (2003). DOI: 10.1103/PhysRevLett.91.013201.
3 G.P. Miroshnichenko, Journal of Experimental and Theoretical Physics, 112(6), 923-931, (2011). DOI:10.1134/S1063776111050141. 2011.
4 C. Simenel, P. Chomaz, G. de France, Physical Review Letters, 93(10), 102701, (2004). DOI:10.1103/PhysRevLett.93.102701.
5 S. Bovino, M. Wernli, F.A. Gianturco, Astrophysical Journal, 699(1), 383-387, (2009). DOI: 10.1088/0004-637X/699/1/383.
6 A. Costantini, N.F. Lago, A. Lagana, and F.A. Huarte-Larranaga, Computational Science and its Applications – ICCSA 2009, PT II. Lecture Notes in Computer Science, 5593, 104, (2009). International Conference on Computational Science and Its Applications (ICCSA 2009). Seoul, South Korea, 2009.
7 P. Deglmann, A. Schaefer, and C. Lennartz, International Journal of Quantum Chemistry, 115(3), 107-136, (2015). DOI:10.1002/qua.24811.
8 V. Potapov, S. Gushanskiy S., Guzik V., Polenov M., Software Engineering Trends and Techniques in Intelligent Systems, CSOC 2017, 3. Advances in Intelligent Systems and Computing, 575, 106-115, (2017). DOI: 10.1007/978-3-319-57141-6_12.
9 A.D. Suprun and L.V. Shmeleva, Nanoscale Research Letters, 11(74), (2016). DOI: 10.1186/s11671-016-1269-0.
10 M.A. Oliver, Foundations of Physics Letters, 4(4), 337-350, (1991). DOI: 10.1007/BF00665893.
11 V.М. Galitsky, B.М. Karnakov, and V.I. Kogan, Zadachi po kvantovoy mekhanike, uchebnoe posobie. (Мoscow, Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1981), 648 р.
12 Subatomnaya fizika. Pod redaktsiei B.S.Ishkhanova. (Moskva, MGU, 1994), 224 р. (in russ).
13 D. Perkins. Vvedenie v fiziku vysokih energiy. (Moskva, Energoatomizdat, 1991), 429 р. (in russ).