New method of investigating of bifurcation regimes by use of realizations from a dynamical system
Keywords:
Bifurcation, maps, chaotic oscillations, the evolutional order parameterAbstract
At the present time constructing of bifurcation diagrams for a nonlinear dynamical system can be realized by use of a certain parameter which changes the state of the system. Therefore it is impossible to construct a bifurcation diagram of a dynamical system without of using an order parameter of the dynamical system. A lot of natural phenomena can be described without of using an order parameter of the dynamical system. For example, time realizations of astronomical processes, changes of weather, earthquake magnitude, etc., doesn’t contain an order parameter. Naturally, we arise the question: is it possible to construct a bifurcation diagram without the order parameter of a dynamical system?
To solve this problem we propose the new expression for the order parameter of an evolutionary process. This option allows constructing a bifurcation diagram for a realization without knowing the equation describing a dynamical system. The presented examples of bifurcation diagrams are shown universality of the method.
References
2. Gonchenko A.S., Gonchenko S.V., Shil’nikov L.P. K voprosu o stsenariyakh voz-niknovenya khaosa u trekhmernikh otobrazheniiy // Nelineiynaya dinamika. - 2012. - Т. 8, № 1. - S.3–28. (in Russ)
3. Ivanov A.P. Issledovanie razrivnykh bifurkatsiyi v negladkikh dinamicheskikh sistemakh // Nelineinaya dinamika. - 2012. - Т. 8, № 2. - S. 231–247. (in Russ)
4. Anishenko V.S., Biryukova N.I., Astakhov S.V., Boev Ya.I. Vremya vozvrata Puankare i lokal’naya razmernost’ khaoticheskikh attraktorov // Nelineiynaya dinamika. - 2012. - Т. 8, № 3. - S. 449–460. (in Russ)
5. Kuznetsov A.P., Pozdnyakov M.V., Sedova Yu.V. Svyazannie universal’nie otobrazheniya s bifurkatsieiy Neimana- Sakera // Nelineiynaya dinamika. - 2012. - Т.8, № 3. - S.473–482. (in Russ)
6. Gonchenko S.V., Shilnikov L.P., and Turaev D.V. On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors // Regular and Chaotic Dy-namics. – 2009. - Vol. 14, No. 1. - P. 137–147.
7. Thompson J. M. T., Stewart H. B. Nonlinear Dynamics and Chaos // John Wiley & Sons, England, 2002. - 458 p.
8. Glending P. Stability, instability and chaos. – Cambridge University Press, 2001. - 388 p.
9. Zhanabaev Z.Zh. And Akhtanov S.N. Universal’noe otobrazhenie peremezhaemosti // Vestnik KazNU, seriya fizicheskaya. – 2011. - № 2 (37). - S. 15-25. (in Russ)
10. Zhanabaev Z.Zh. Obobshchennaya metricheskaya kharakteristika dinamicheskogo khaosa // Materialy VIII Mezhdunarodnoi shkoly “Khaoticheskie avtokolebanya i obrazovanie struktur ” – Saratov, 2007. - S. 67-68. (in Russ)
11. Zhanabaev Z.Zh., Аlmasbekov N.Е., Beisebaeva А.S. Manapbaeva А.B. Аkhtanov S.N. Zashchita informatsii dinamicheskim khaosom s fazovim upravleniem // Materiali 7-i Mezhdunarod-noi nauchnoi konferentsii. Khaos i strukturi v nelineinikh sistemakh. Teoria i eksperiment. Кaragan-da, 2010. - S. 13-20. (in Russ)
12. Lyubimov D.V., Zaks M.A. Two mechanisms of the transition to chaos in finite – dimensional model of convection // Physica 9D. – 1983. – P. 52-64.