D-brane with codimension 1 in modified gravity

Authors

  • V.D. Dzhunushaliev IETP Al-Farabi Kazakh National University
  • V. Folomeev Zh.Zheenbayev physics institute of the NAS of the Kyrgyz Republic
  • G.K. Nurtayeva IETP Al-Farabi Kazakh National University
  • А.A. Serikbolova Al-Farabi Kazakh National University
  • Sung-Won Kim Ewha Womans University

DOI:

https://doi.org/10.26577/RCPh-2019-i3-1

Keywords:

the modified gravity theories, the string theory, thick brane

Abstract

Modified gravity theories are one of the competing models for explaining the modern accelerated expansion of the universe. These theories are, apparently, the simplest geometric generalization of the general theory of relativity. They are based on replacing the Einstein-Hilbert Lagrangian R by an arbitrary function of the scalar curvature f(R). From a mathematical point of view, the field equations obtained by varying the modified action in the metric have a richer structure of possible solutions, which allows them to be used to obtain new physical results. In this paper, vacuum flat-symmetric solutions in multidimensional modified gravity theories of type f(R)=-aRn, which can be considered as thick branes with codimension =1 in N-dimensional space-time are obtained. These solutions are defined by four parameters. The dependences of the obtained solutions on these parameters are numerically investigated. It is shown that in some cases, when the corresponding parameter tends to infinity, there is saturation. It is shown that the asymptotic behavior of all solutions is antidesitteric.

References

1 J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995).

2 G. T. Horowitz and A. Strominger, Nucl. Phys. B 360, 197 (1991).

3 N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429 263 (1998); I.Antoniadis, N. Arkani-Hamed, S.
Dimopoulos and G. Dvali, Phys. Lett. B 436 257 (1998).

4 M. Gogberashvili, Int. J. Mod. Phys. D 11, 1635 (2002); ibid. 1639 (2002); M. Gogberashvili, Europhys. Lett., 49, 396. (2000); M. Gogberashvili, Mod. Phys. Lett., A 14, 2025 (1999).

5 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); ibid. 4690.

6 N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61, 033005 (2000); A. Mirabelli and M. Schmaltz, Phys. Rev. D 61, 113011 (2000).

7 S. Aguilar and D. Singleton, Phys. Rev. D 73, 085007 (2006).

8 C. Deffayet, G.R. Dvali, and G. Gabadadze, Phys. Rev. D 65, 044023 (2002); M. Gogberashvili, Phys. Lett. B 636, 147 (2006).

9 M. Gogberashvili and M. Maziashvili, Gen. Rel. Grav. 37, 1129 (2005).

10 V. Dzhunushaliev, V. Folomeev, and M. Minamitsuji, Rept. Prog. Phys. 73, 066901 (2010).

11 F.E. Schunck and E. W. Mielke, Class. Quant. Grav. 20, R301 (2003).

12 C. A. R. Herdeiro, A. M. Pombo and E. Radu, Phys. Lett. B 773, 654 (2017).

13 V. Dzhunushaliev and V. Folomeev, Phys. Rev. D 99, no. 10, 104066 (2019).

14 V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, JHEP 1004, 130 (2010).

15 A. Riess et al., Astron. J. 116, 1009 (1998), astro-ph/9805201.

16 S. J. Perlmutter et al., Astroph. J. 517, 565 (1999), astro-ph/9812133.

17 S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59 (2011).

Downloads

Published

2019-09-26

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

1 2 > >>