Qualitative analysis of the eigenvalue problem for two coupled Ginzburg-Landau equations

  • V. Dzhunushaliev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • V. Folomeev Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek, Kyrgyz Republic
  • R. Myrzakulov Department of General and Theoretical Physics, Eurasian National University, Astana, Kazakhstan
  • A. Urazalina Al-Farabi Kazakh National University, Kazakstan, Almaty


Eigenvalue problem for two coupled Ginzburg-Landau equations is numerically investigated. The fixed points of corresponding equations system are found. The classification of these points is made. It is shown that the investigated equations set has local minima, global minima, local maximum, and the points refer to saddle points. The phase portraits of corresponding ordinary differential equations and the dependence of some parameters of the equations system and the total energy on the initial values are given.The profiles of dimensionless energy density of the equations set for the different initial values of are given. The dependence of the parameters of the system m1, m2 and the total energy M on the initial values of c0 is investigated.


1. Rajaraman R. Solitons and instantons: An introduction to solitons and instantons in quantum field theory. - North-Holland Publishing Company: Amsterdam, New York, Oxford, 1982. - 409 p.

2. Bazeia D., M.J. dos Santos and Ribeiro R.F. Solitons in systems of coupled scalar fields // Phys. Lett. A. – 1995. – Vol. 208. – P. 84-88. [arXiv:hep-th/0311265].

3. Bazeia D., Nascimento J.R.S., Ribeiro R.F. and Toledo D. Soliton stability in systems of two real scalar fields // J. Phys. A. – 1997. – Vol.30. – P. 8157-8166. [arXiv:hep-th/9705224].

4. Bezerra de Mello E.R., Brihaye Y. and Hartmann B. Strings in de Sitter space // Phys. Rev.D. – 2003. – Vol. 67. – P. 124008 [arXiv:hep-th/0302212].

5. Bazeia D. and Gomes A.R. Bloch Brane // JHEP. – 2004. – Vol. 0405. – P. 012 (13p.). [arXiv:hep-th/0403141].

6. Vernov S.Y. Construction of Exact Solutions in Two-Fields Models and the Crossing of the Cosmological Constant Barrier // Teor. Mat. Fiz. – 2008. – Vol.155. – P. 47. [Theor. Math. Phys. 155, 544 (2008)] [arXiv:astro-ph/0612487].

7. Cordero R. and Mota R.D. Soliton Stability in a Generalized Sine-Gordon Potential // Int. J. Theor. Phys. – 2004. – Vol. 43. – P. 2215-2222. [arXiv:0709.2822 [hep-th]].

8. Aref'eva I.Y., Bulatov N.V. and Vernov S.Y. Stable Exact Solutions in Cosmological Models with Two Scalar Fields // Theor. Math. Phys. – 2010. – Vol. 163. – P. 788-803.[arXiv:0911.5105 [hep-th]].

9. Dzhunushaliev V., Myrzakulov K. and Myrzakulov R. Boson stars from a gauge condensate // Mod. Phys. Lett. A. – 2007. – Vol.22. – P. 273-282. [arXiv:gr-qc/0604110].

10. Dzhunushaliev V., Folomeev V., Myrzakulov K. and Myrzakulov R.Cosmic string with two interacting scalar fields // Mod. Phys. Lett. A. – 2007. – Vol. 22. – P.407-414 [arXiv:gr-qc/0610111].

11. Dzhunushaliev V. and Folomeev V. 4D static solutions with interacting phantom fields // Int. J. Mod. Phys. D. – 2008. – Vol. 17. – P. 2125-2142. [arXiv:0711.2840 [gr-qc]].

12. Dzhunushaliev V., Folomeev V., Myrzakulov K. and Myrzakulov R. Phantom fields: bounce solutions in the early Universe and S-branes // Int. J. Mod. Phys. D. – 2008.– Vol. 17. – P. 2351-2358. [arXiv:gr-qc/0608025].

13. Folomeev V. Bianchi type I model with two interacting scalar fields // Int. J. Mod. Phys. D. – 2007. – Vol. 16. – P. 1845-1852. [arXiv:gr-qc/0703004].

14. Dzhunushaliev V. Thick brane solution in the presence of two interacting scalar fields // Grav. Cosmol. – 2007. – Vol. 13. – P. 302-307. [arXiv:gr-qc/0603020].

15. Dzhunushaliev V., Folomeev V., Singleton D. and Aguilar-Rudametkin S. 6D thick branes from interacting scalar fields // Phys. Rev. D. – 2008. – Vol. 77. – P. 044006 [arXiv:hep-th/0703043].

16. Dzhunushaliev V., Folomeev V., Myrzakulov K. and Myrzakulov R. Thick brane in 7D and 8D spacetimes // Gen. Rel. Grav. – 2009. – Vol. 41. – P. 131-146. [arXiv:0705.4014 [gr-qc]].

17. Dzhunushaliev V., Folomeev V. and Minamitsuji M. Thick de Sitter brane solutions in higher dimensions // Phys. Rev. D. – 2009. – Vol. 79. – P. 024001 [arXiv:0809.4076 [gr-qc]].

18. Dzhunushaliev V.Two interacting GL-equations in High-Tc superconductivity and quantum chromodynamics // arXiv:0705.3170 [cond-mat.supr-con].
How to Cite
DZHUNUSHALIEV, V. et al. Qualitative analysis of the eigenvalue problem for two coupled Ginzburg-Landau equations. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 52, n. 1, p. 68-76, apr. 2015. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/963>. Date accessed: 25 oct. 2020.
Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.