Influence of technological parameters of obtaining carbon film nanostructures
Keywords:
carbon film nanostructures, nanodiamonds, magnetron sputtering, Raman spectroscopy, scanning electron microscopyAbstract
The influence of technological parameters of film carbon nanostructures obtained on metallic and semiconductor substrates by the method of magnetron ion-plasma sputtering is considered. The results on the effect of a mixture of gases Ar+H2 and Ar+CH4 on the structure of films that have been investigated using scanning electron microscopy and Raman spectroscopy are presented. According to the Raman spectra data presented in the article, the features of the structure of the obtained samples are described, which differ greatly depending on the gas mixture used. From the results of SEM microphotographs, the distribution and average sizes of the detected nano-sized carbon fragments were estimated. The analyzed data reflect the properties of carbon film nanostructures depending on the technological parameters and the conditions for preparation of targets. The temperature patterns and the dependence of the working gas mixture used are determined.
References
2. I.P. Suzdalev Nanotekhnologiya. Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Moscow: Librokom, 2009), 592 p. (in Russ).
3. S. Srinivasan and R. Saraswathi, Current Sci., 97 (3), 302–303, (2009).
4. D.C. Green, D.R. Mckenzie, and P.B. Lukins, Material science forum, 52-53, 103-124, (1989).
5. J. Robertson, Material science forum, 52-53, 125-150, (1989).
6. L.A. Pesin and E.M. Baitinger, Carbon, 40, 295-306, (2002).
7. Sh.M. Mominzzaman, K.M.Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon, 38, 127-131, (2000).
8. M. Yoshikao, Material Science forum, 52-53, 365-386, (1989).
9. D. Chen., A. Wei., S.P. Wong, S. Peng., J.B. Xu, I.H. Wilson, J. Non-Cryst. Solids, 254, 161-166, (1999).
10. E. Mounier, F. Bertin, M. Adamic, Y. Pauleau, P.B. Barna, Diamond and related materials, 5, 1509-1514, (1996).
11. Juh-Tzeng lue., Sheng-Yuan Chen., Chi-ling Chen., Mei-Chung Lin, J. Non-Cryst. Solids, 265, 230-237, (2000).
12. M. Hakovitra, R. Verda, X.M. He, and M. Nastasi, Diamond and related materials, 10, 1486-1490, (2001).
13. J.J. Hanak, H.W. Lehmann, R.K. Weher, J. Appl. Phys., 43 (4), 1666-1673, (1972).
14. A.C. Ferrari and J. Robertson, Phys. Rev. B, 61 (20), 14095-14107, (2000).
15. A.C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W.I. Milne, V. Stolojan, L.M. Brown, A .Libassi, and B.K. Tanner, J. Non-Cryst. Solids, 266-269, 765-768, (2000).
16. C. Casiraghi, A.C. Ferrari, J. Robertson, Physical Review B, 72, 085401, (2005).
17. N. Savvides, Material science forum, 52-53, 412, (1989).
18. I.A. Tsyganov, N.R. Guseynov, and A.M. Il'in, Izvestiya VUZov., Ser. Fizika, 1/3, 307-310, 2011.
19. Y. Rubin, M. Kahr, C.B. Knobler, F. Diederich, and Ch.L. Wilkins, J. Amer. Chem. Soc., 113, 495, (1991).
20. D. Ugarte, Nature, 359, 707–709, (1992). DOI:10.1038/359707a0
21. D. Ugarte, Chem. Phys. Lett., 198, 596-602, (1992).
22. D. Ugarte, Intern J. Mod. Phys. B, 23/24, 3815-3819, (1992). doi.org/10.1142/S0217979292001870
23. T.W. Ebbesen Carbon nanotubes: preparation and properties. (Boca raton (FL.): CRC Press. 1996), pp.1995-1998.
24. Carbon nanotubes / Ed. By M. Endo et al. (N.Y.: Elsevier), 696 p.
25. R. Saito, G. Dresselhaus, and M.S.Dresselhaus, Physical properties of carbon nanotubes. (L.: Imperial College press. 1998), 815 р.
26. P.J.F. Harris, Carbon nanotubes and related structures: New materials for the 21st century. (N.Y.: Cambridge Univ. Press. 1999), pp. 896-898.