Analysis of models of dielectric functions used in a dense plasma

Authors

  • Yu. V. Arkhipov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.B. Ashikbayeva IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • I.M. Tkachenko Valencia Polytechnic University, Spain, Valencia
        58 20

Keywords:

method of moments, dielectric function, loss function, the dynamic local fields function

Abstract

The fulfilment of sum rules for the loss function which is determined using different models of the dielectric function (DF): the random phase approximation (RPA), Mermin, and extended models of RPA and Merminis investigated. In the extended models the dynamic collision frequency is used, which is calculated according to computer simulations and within the Born-Mermin model. It is shown that the DF obtained by the method of moments satisfyall sum rules. For other models of DF these equalities hold in part. Mermin and RPA models do not satisfy known, associated with convergent frequency zero and fourth moment, sum rules, but satisfy the second sum rule. These models take into account the electron-electron interaction only with the introduction of electron correction on a local-field, but do not take into account the electron-ion interaction.

References

1. ArkhipovYu.V., Ashikbayeva A.B., Askaruly A., Davletov A.E. and Tkachenko I.M. Dielectric function of coupled plasmas, the stopping power, and the sum rules // Physical Review. E. – 2014. – Vol. 90. – P. 053102.

2. Lindhard J. On the properties of a gas of charged particles // Mat. Fys. Medd. K. Dan. Vidensk. Selsk. – 1954. - Vol. 28. - Р. 8.

3. Mermin N.D. Lindhard Dielectric Function in the Relaxation-Time Approximation // Phys. Rev. B. – 1970. - Vol. 2. – Р. 2362.

4. Das A.K. The relaxation-time approximation in the RPA dielectric formulation // J. Phys. F. – 1975. – Vol. 5. – P. 2035.

5. Tkachenko I.M., ArkhipovYu.V., Askaruly A. The method of moments and its applications in plasma physics. – Germany: Lap Lambert Academic Publishing 2012. – р. 125.

6. TkachenkoI.M., AlcoberJ. and Fernandez de Cordoba P. Electronic correlations in real and model plasmas // J.Phys. IV France. – 2000. – Vol. 10. - P. 199-202.

7. Tanaka S., Ichimaru S. Dynamic theory of correlations in strongly coupled, classical one-component plasmas: Glass transition in the generalized viscoelastic formalism // Phys. Rev. A. – 1987. – Vol. 35. – P. 4743-4754.

8. ArkhipovYu.V., Ashikbayeva A.B., Davletov A.E., Tkachenko I.M. The extended Mermin approximation for the collisional plasma dielectric function // Abstracts of 14th International Conference on the Physics of Non-Ideal Plasmas - Rostock, Germany. – 2012. – P.43.

9. ArkhipovYu. V., AshikbayevaA.B., AskarulyA., DavletovA. E., DubovtsevD., TkachenkoI.M. Enhancement of stopping power in dense two-component plasmas // Abstracts of International Conference on the Strongly Coupled Coulomb Systems.-Santa Fe, New Mexico, USA. – 2014. – P.94.

10. Arkhipov Yu.V., Ashikbayeva A.B., Askaruly A., Davletov A.E., Tkachenko I.M. Analiz dielektricheskikh funktsy plotnoy plazmy // Mezhdunarodnoye rabocheye soveshchaniye «Fizika i tekhnologiya: Sovremennoye sostoyaniye i perspektivy», posvyashchennoye 80-letiyu professora Murzagaliyeva G.Zh. – Almaty. - 2013g. – S. 26-30.

11. Arkhipov Yu. V., Askaruly A., Ballester D., Davletov A.E., Meirkanova G. M., Tkachenko I. M. Collective and static properties of model two-component plasmas // Phys. Rev. E. – 2007. – Vol. 76. – P. 026403-1–9.

12. Adamyan V. M., Tkachenko I.M. Sum rules and exact relations for quantal Coulomb systems // Contrib. Plasma Phys. – 2003. – Vol. 43. – P. 252-257.

13. Arkhipov Yu. V., Askaruly A., Ballester D., Davletov A.E., Tkachenko I.M., Zwicknagel G. Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach // Phys. Rev. E. – 2010. – Vol. 81. – P. 026402-1–9.

14. Morozov I., Reinholz H., Röpke G., Wierling A. and Zwicknagel G. Molecular dynamics simulations of optical conductivity of dense plasmas // Phys. Rev E. – 2005. – Vol.71. – P. 066408 - 066420.

15. ThieleR., SperlingP., ChenM., BornathTh., FäustlinR. R., FortmannC., GlenzerS. H., KraeftW.-D., PukhovA., ToleikisS., TschentscherTh. and RedmerR. Thomson scattering on inhomogeneous targets // Phys. Rev. E. – 2010. – Vol. 82. - P. 056404.

16. Fortmann C., Wierling A. and Röpke G. Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas // Phys. Rev. E. – 2010. – Vol. 81. - P. 026405.

17. Hansen J.-P. Plasmon dispersion of the strongly coupled one component plasma in two and three dimensions // J. Phys. Lett. – 1981. – Vol. 42. – P. 397-400.

18. Barriga-Carrasco M.D. Dynamical local field corrections on energy loss in plasmas of all degeneracies // Phys. Rev. E. – 2009. - Vol. 79. – Р. 027401.

19. Barriga-Carrasco M.D. Proton stopping using a full conserving dielectric function in plasmas at any degeneracy Phys. Rev. E. – 2010. - Vol. 82. – Р. 046403.

Downloads

How to Cite

Arkhipov, Y. V., Ashikbayeva, A., & Tkachenko, I. (2014). Analysis of models of dielectric functions used in a dense plasma. Recent Contributions to Physics (Rec.Contr.Phys.), 51(4), 57–62. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/850

Most read articles by the same author(s)