Determination of the energy spectrum of the hydrogen molecular ion HT+. Hyperfine structure
Keywords:
energy spectrum, Schrödinger equation, hyperfine structureAbstract
In this paper, we use the exponential expansion of the wave functions with the variational basis set type exp(-anR-bnr1-g r2) for the systematic calculation of non-relativistic bound state energy hydrogen molecular ion HT+. We perform calculations for the state with the total orbital angular momentum L = 0 and 1 with a full set of vibrational quantum numbers v = 0 – 23. And calculate the coefficients for the effective Hamiltonian and hyperfine splitting of the ro-vibrational levels of the hydrogen molecular ion HT+.
References
2. Gr´emaud B., Delande D., and BillyN.Highly accurate calculation of the energy levels of the H2+ molecular ion // J. Phys. B: At. Mol. Opt. Phys. – 1998. – Vol. 31. – P. 383-392.
3. Schiller S. and L¨ammerzahl C. Molecular dynamics simulation of sympathetic crystallization of molecular ions // Phys. Rev. A. – 2003. – Vol.68. – P. 053406.
4. Koelemeij J.C.J., Roth B., Wicht A., Ernsting I., and SchillerS. Vibrational Spectroscopy of HD+ with 2-ppb Accuracy // Phys. Rev. Lett. – 2007. – Vol. 98. – P. 173002.
5. Mohr P.J., Taylor B.N., and NewellD.B.CODATA recommended values of the fundamental physical constants: 2006 // Rev. Mod. Phys. – 2008. – Vol.80. – P. 663.
6. Bishop D.M. Accurate Calculation of the Infrared Spectra of HD+, HT+, and DT+// Phys. Rev. Lett. – 1976. – Vol. 37. – P. 484.
7. ColbournE.A. and BunkerP.R.Accurate theoretical vibration-rotation energies and transition moments for HD+, HT+, and DT+// J. Mol. Spectrosc. – 1976. – Vol.63. – P.155.
8. KorobovV.I. Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies// Phys. Rev. A. – 2000. – Vol. 61. – P. 064503.
9. Rosenthal C.M.//Chem. Phys. Lett. -1971. – Vol.10. – P.381.; Somorjai R.L. and PowerJ.D. – 1972. – Vol.12. – P.502; Power J.D. and Somorjai R.L.// Phys. Rev.A – 1972. – Vol.5. – P.2401.
10. Thakkar A.J. and Smith V.H. Jr. Compact and accurate integral-transform wave functions. I. The 1S1 state of the helium-like ions from H− through Mg10+ // Phys. Rev. A. – 1977. – Vol.15. – P.1.
11. FrolovA. M. and Smith V.H. Jr. Universal variational expansion for three-body systems // J. Phys. B: At. Mol. Opt. Phys. – 1995. – Vol.28. – P. L449.
12. Bednarz E., Bubin S., and Adamowicz L. Non-Born–Oppenheimer variational calculations of HT+ bound states with zero angular momentum// J. Chem. Phys. – 2005. – Vol.122. – P. 164302.