Flat-symmetric solutions in -αR^n gravity

Authors

  • V. Dzhunushaliev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • G.K. Nurtayeva IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.A. Serikbolova IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty

DOI:

https://doi.org/10.26577/rcph-2019-1-1091
        170 46

Keywords:

modified theories of gravity, domain wall, thick brane

Abstract

One of the most interesting and perspective directions in modern theoretical physics is studying of the modified gravity theories. The purpose of this direction is the description of gravitation within the modified theory so that without being in a conflict with the available experimental data to offer the best description of a wide range of the phenomena in cosmology, including, for the best understanding of the nature of dark matters and energy.

In this work astrophysical objects are investigated: 4-dimensional domain walls and 6-dimensional thick branes in the modified theory of gravity. Regular asymptotically anti-de Sitter solutions in some range of value of the parameter n and δ were obtained. The main feature of these models consists in existence of a fixed point in phase space representing the center of a brane.

References

1 V. Dzhunushaliev, Kim Sung-Won., G.K. Nurtayeva, N.A. Protsenko, and A. Idrissov, Rec.Contr.Phys, 66 (3), 12-20 (2018)

2 V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, arXiv: 0912.2812.

3 S. Nojiri, S.D. Odintsov and P.V.Tretyakov, Phys. Lett. B 651, 224 (2007).

4 A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010). arXiv:1002.4928.

5 T.P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451(2010). arXiv:0805.1726 .

6 H. A. Buchdahl, Mon. Not. R. astr. Soc., 150, 1 (1970).

7 A.A. Starobinsky, Phys.Lett. B 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X.

8 A.A. Starobinsky, Phys.Lett. B. (1982). https://doi.org/10.1016/0370-2693(82)90541-X.

9 A.A. Starobinsky, Soviet Astronomy Lett., 9, 302-304 (1983).

10 V.T. Gurovich and A.A. Starobinsky, Sov.Phys. JETP 50, 844 (1979).

11 H. Motohashi, A.A. Starobinsky, arXiv:1704.08188

12 P. Valtancoli, arXiv:1808.03087

13 T.W.B.Kibble, Journal of Physics A: Mathematical and General, 9 (8), 1387-1398 (1976).

14 S. Capozziello, Int. Journ. Mod. Phys. D 11. 483 (2002). DOI: 10.1142/S0218271802002025.

15 S. Capozziello, S. Carloni and A. Troisi, Recent Res. Devel. Astron.Astrophysics, 1, 625 (2003).

16 V. Folomeev, V. Gurovich, and I.Tokareva, Grav. Cosmol. 12. 163 (2006).

17 S. Nojiri and S. Odintsov, Phys. Lett. B 576, 5 (2003).

18 S. Nojiri and S.D. Odintsov, Mod. Phys. Lett. A 19, 627 (2004).

19 S. Nojiri and S. Odintsov, Phys.Rev. D 68 123512 (2003).

20 S. Nojiri and S.D. Odintsov, ECONF C 0602061 (2006).

21 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

22 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

23 V. Dzhunushaliev, V. Folomeev, and M. Minamitsuji, Thick brane solutions. arXiv: 0904.1775.

24 A.D. Sakharov, Sov. Phys. Dokl., 12 (1968) 1040 Dokl. Akad. Nauk Ser. Fiz., 177. 70. (1967).

25 T. V. Ruzmaikina, A. A. Ruzmaikin, JETP, 30, 372 (1970).

26 V.T. Gurovich, Dokl. Akad. Nauk SSSR 195 (1970) 1300, Sov. Phys. Dokl. 15. 1105. (1971).

27 H. Nariai, Prog. Theor. Phys. (Kyoto) 46, 433 (1971).

28 V.T. Gurovich and A.A. Starobinsky, Sov. Phys., JETP, 50, (1979).

29 T. Kaluza. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.): 966–972. (1921). e-Print: arXiv:1803.08616 physics.hist-ph

30 A. Vilenkin, Phys. Rev. D 23, 852 (1981).

31 Natsuki Watanabe, arXiv:1203.5425.

Downloads

How to Cite

Dzhunushaliev, V., Nurtayeva, G., & Serikbolova, A. (2019). Flat-symmetric solutions in -αR^n gravity. Recent Contributions to Physics (Rec.Contr.Phys.), 68(1), 4–12. https://doi.org/10.26577/rcph-2019-1-1091

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

1 2 > >>