Digital neutron/gamma discrimination with an organic scintillator

Authors

  • D.B. Berikov L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan; Joint Institute for Nuclear Research, Dubna, Russia
  • G.S. Ahmadov Joint Institute for Nuclear Research, Dubna, Russia; National Nuclear Research Center, Baku, Azerbaijan
  • Yu.N. Kopatch Joint Institute for Nuclear Research, Dubna, Russia
  • K.Sh. Zhumadilov L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
  • V.L. Kuznetsov Joint Institute for Nuclear Research, Dubna, Russia

DOI:

https://doi.org/10.26577/RCPh-2019-i4-4
        151 138

Keywords:

Neutron-gamma pulse shape discrimination, T-odd effects in the fission of heavy nuclei

Abstract

The paper presents the results of neutron-gamma discrimination using organic stilbene scintillator. Stilbene scintillations are characterized by a fast rise time (~1 ns), and their decline is characterized by the existence of a fast (for compton electrons from gamma-quanta) and a slow (for recoil protons from fast neutrons) component. A well-known PSD (pulse shape discrimination) method of simultaneous measurement of the total charge and the part of this charge in the tail of the pulse, is proposed for identifying particles. An analog-to-digital converter of the TsRS-32 type was used to convert neutron and gamma-ray pulses and to store them in a digital format. An algorithm has been developed in the C ++ and ROOT programming languages for digital data processing.

Stilbene-based detectors are planned to be used in an experiment to study T-odd effects for given particles in the fission of heavy nuclei induced by polarized neutrons. Experimental work was carried out in the I.M. Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research.

References

1 N.A. Gundorin, Sh.S. Zeinalov, Yu.N. Kopatch, A.B. Popov and V.I. Furman, Phys. Part. Nucl. 47:4, 1248-1287 (2016).

2 G.S. Ahmadov, Yu.N. Kopatch, S.A. Telezhnikov, F.I. Ahmadov, C. Granja and et al., Phys. Part. Nucl. Lett. 12:4, 542-549 (2015).

3 A. Gagarski, F. Goennenwein, I. Guseva, P. Jesinger, Yu. Kopatch and et al., Phys. Rew. C 93, 054619 (2016).

4 P. Jesinger, G. V. Danilyan, A. M. Gagarski, P. Geltenbort, F. Goennenwein and et al., Phys. At. Nucl. 62:9, 1608-1610 (1999).

5 P. Jesinger, A. Koetzle, A. Gagarski, F. Gӧnnenwein, G. Danilyan and et al., Nucl. Instrum. Methods Phys. Res. A. 440, 618-625 (2000).

6 G. V. Danilyan, JETP Letters 107:4, 216-218 (2018).

7 G.V. Danilyan, J. Klenke, Yu.K. Kopach, V.A. Krakhotin, V.V. Novitsky and et al., Phys. At. Nucl. 77, 715-720 (2014).

8 Yu.N. Kopatch, V.V. Novitsky, G.S. Ahmadov, A.M. Gagarsky, D. Berikov and et al., EPJ Web of Conferences 169, № 00010 (2018).

9 G.V. Danilyan, J. Klenke, V.A. Krakhotin, V.L. Kuznetsov, V.V. Novitsky and et al., Phys. At. Nucl. 72, 1872-1877 (2000).

10 G.V. Danilyan, J. Klenke, V.A. Krakhotin, Yu.N. Kopatch, V.V. Novitsky and et al., Phys. At. Nucl. 74, 697-701 (2011).

11 M.P. Taggart, C. Payne and P.J. Sellin, Jour. Phys. Conference Series 763, 012007 (2016).

12 A.C. Comriea, A. Bufflera, F.D. Smit and H.J. Wörtche, Nucl. Instrum. Methods Phys. Res. A. 772, 43-49 (2015).

13 R.M. Preston, J.E. Eberhardt and J.R. Tickner, IEEE Transact. Nucl. Scien. 61:4, 2410-2418 (2014).

14 Y. Uchida, E. Takada, A. Fujisaki, M. Isobe, K. Ogawa and et al., Review of Science instruments 85, 11E118 (2014).

15 S. Nyibule, E. Henry, J. Toke, W. Skulski and W-U. Schroder, Progress in Physics 10, 163-165 (2014).

16 T. Szczęśmak, M. Grodzicka, M. Moszyński, D. Wolski, L. Swiderski and et al., IEEE Nuclear Science Symposium and Medical Imaging Conference, 1-4 (2014).

17 R. Aryaeinejad, J. Hartwell, D. Spencer, IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium, 1:500, 504 (2005).

18 P.V. Chuan, N.D. Hoa, N.D. Chau and V.N. Khue, Dalat University Journal of Science 6:3, 281-292 (2016).

19 D. Takaku, T. Oishi and M. Baba, Prog. Nucl. Scien Techn. 1, 210-213 (2011).

20 R.A. Akbarov, G.S. Ahmadov, F.I. Ahmadov, D. Berikov, M. Holik and et al., Nucl. Instrum. Methods Phys. Res. A. 936, 549-551 (2018).

Downloads

How to Cite

Berikov, D., Ahmadov, G., Kopatch, Y., Zhumadilov, K., & Kuznetsov, V. (2019). Digital neutron/gamma discrimination with an organic scintillator. Recent Contributions to Physics (Rec.Contr.Phys.), 71(4), 29–34. https://doi.org/10.26577/RCPh-2019-i4-4

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics