Advantages and prospects for using silicon nanostructures for solar driven hydrogen generation

Authors

DOI:

https://doi.org/10.26577/RCPh.2020.v74.i3.08
        134 74

Keywords:

кремний наноқұрылымдары, фотокатализ, судың ыдырауы., silicon nanostructures, photocatalysis, water splitting

Abstract

Hydrogen energy is one of the promising eco-friendly directions in the development of modern energy, and the production of hydrogen from water using a catalyst and solar energy is one of the simple and affordable methods for producing the necessary fuel. The search for suitable semiconductors for use as photocatalysts for water splitting into molecular hydrogen and oxygen is to be considered an urgent subject. The present work is devoted to a review of modern literature data on the preparation, description of the main physicochemical properties, and application of silicon nanostructures of various geometries as photocatalysts for hydrogen generation by splitting of water. In paper, we describe various methods for the preparation and synthesis of silicon nanomaterials with different geometries: silicon nanowires, silicon nanoparticles, silicon nanodots and porous structures. In addition, we consider the advantages and disadvantages of using heterojunction hybrid nanomaterials based ofn silicon nanostructures in photocatalytic processes to increase the efficiency of hydrogen evolution. Based on the data of published experimental and theoretical works, the mechanism of solar driven water splitting and the use of silicon nanostructures as a semiconductor catalyst is discussed. In conclusion, an assessment of the state of the problem of obtaining and studying the photocatalytic properties of silicon nanostructures is given.

References

1 D. Parra et al. Renewable and Sustainable Energy Reviews. 101, 279-294 (2019).

2 A. A. Ismail et al. Solar Energy Materials and Solar Cells. 128, 85-101 (2014).

3 D. Yermukhamed et al. News of the Academy of Sciences of Kazakhstan, Series Chemistry and Technology. 4(424), 26-38 (2017). In Kazakh.

4 K. Hashimoto K. Et al. Japanese Journal of Applied Physics. 44(12), 8269-8285 (2005).

5 X. Chen et al. Chem. Rev. 110, 6503–6570 (2010).

6 Y. Moriya et al. Coord. Chem. Rev. 257, 1957–1969 (2013).

7 J. Ji et al. Journal of Materials Science: Materials in Electronics. 24 4433-4438 (2013).

8 G.K. Mussabek et al. Proceedings of 17-th SGEM 2017, 29 June-5 July 2017, Albena, Bulgaria. 17, 141- 147 (2017).

9 W. Bludau et al. J. Appl. Phys. 45, 1846–1848 (1974).

10 K.Q. Peng et al. Nano Today. 8, 75–97 (2013).

11 A.I. Hochbaum and P. Yang, 110, 527–546 (2010).

12 G. Broenstrup et al. ACS Nano. 4, 7113–7122 (2010).

13 S.W. Boettcher et al. Science. 327, 185–187 (2010).

14 E. Garnett and P. Yang. Nano Lett. 10, 1082–1087 (2010).

15 Y.-F. Huang et al. Nat. Nanotechnol. 2, 770–774 (2007).

16 M.D. Kelzenberg et al. Nat. Mater. 9, 239–244 (2010).

17 I. Oh et al. Nano Lett. 12, 298–302 (2012).

18 F. Priolo et al. Nat. Nanotechnol. 9, 19–32 (2014).

19 B. Delley et al. Appl. Phys. Lett. 67, 2370–2372 (1995).

20 M. Nolan et al. Nano Lett. 7, 34–38 (2007).

21 W. Sun et al. Nat. Commun. 7, 12553 (2016).

22 B.F.P. McVey and R.D. Tilley. Acc. Chem. Res. 47, 3045–3051 (2014).

23 Z. Li et al. Nano Today. 10, 468–486 (2015).

24 Z. Kang et al. J. Am. Chem. Soc. 12, 12090–12091 (2007).

25 A.A. Lapkinet al. Chem.Eng. J. 136, 331–336 (2008).

26 L.M. Wheeler et al. Nat. Commun. 4, 2197 (2013).

27 D. Liu et al. Angew. Chem. Int. Ed. 54, 2980–2985 (2015).

28 M. Shao et al. J. Am. Chem. Soc. 131, 17738–17739 (2009).

29 F.Y. Wang et al. Nanoscale. 3, 3269–3276 (2011).

30 V. Schmidt et al. Adv. Mater. 21, 2681–2702 (2009).

31 H. Han et al. Nano Today. 9, 271–304 (2014).

32 M.L. Zhang et al. J. Phys. Chem. C. 112, 4444–4450 (2008).

33 B. Hoffmann et al. Nanowires – recent advances. InTech, 2012.

34 S.V. Sivaram et al. Nano Lett. 16, 6717–6723 (2016).

35 H. Jansen et al. J. Micromech. Microeng. 6, 14–28 (1996).

36 L. Zong et al. Proc. Natl. Acad. Sci. USA. 112, 13473–13477 (2015).

37 L.M. Wheeler et al. Nat. Commun. 4, 2197 (2013).

38 C. Li et al. J. Phys. Chem. C. 117, 24625–24631 (2013).

39 A. Bapat et al. Plasma Phys. Contr. F. 46, B97–B109 (2004).

40 M. Iqbal et al. ACS Nano. 10, 5405–5412 (2016).

41 F. Meinardi et al. Nat. Photon. 207, 177–185 (2017).

42 Y. He et al. J. Am. Chem. Soc. 133, 14192–14195 (2011).

43 A. Shiohara et al. Nanoscale. 3, 3364–3370 (2011).

44 S. Litvinenko et al. Int. J. Hydrogen Energy. 35, 6773 (2010).

45 F.E. Osterloh. Chem. Soc. Rev. 42, 2294–2320 (2013).

46 K. Sun et al. Chem. Rev. 114, 8662–8719 (2014).

47 F. Dai et al. Nature Communications. 5, 3605 (2014).

48 H. Song et al. ChemNanoMat, 3, 1, 22-26 (2017).

49 C. Liu et al. Nano Lett. 13, 2989–2992, (2013).

50 Z. Xiong et al. Nanotechnology. 24, 265402 (2013).

51 M. Ye et al. J. Mater. Chem. C. 4, 4577–4583 (2016).

52 R. Ghosh and P.K. Giri. RSC Adv. 6, 35365–35377 (2016).

53 B. Guan et al. ACS Sustain. Chem. Eng. 4, 6590–6599 (2016).

Downloads

How to Cite

Mussabek, G., Yermukhamed, D., Baktygerei, S., Assilbayeva, R., Kalimoldayev, M., Amirkhanova, G., & Sivakov, V. (2020). Advantages and prospects for using silicon nanostructures for solar driven hydrogen generation. Recent Contributions to Physics (Rec.Contr.Phys.), 74(3), 61–74. https://doi.org/10.26577/RCPh.2020.v74.i3.08

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience