Decrease in optical losses in solar devices on the basis of gallium arsenide
Keywords:
gallium arsenide, a solar device, the electron-hole transition, Schottky barrier, nanoparticles,Abstract
An efficient antireflection coating is critical for the improvement of solar cell performance via increased light trapping. In this paper findings of investigation of solar cells based on GaAs with thin film of silicon nitride as antireflection coating are presented. Control samples were Schottky junction solar cells fabricated from experimental GaAs solar cells by chemical etching of antireflection coating and p-type upper emitter layer and chemical deposition Au thin film on n – type GaAs surface. Frontal surfaces both p-n junction and Schottky junction solar cells were covered by nanoparticles of nickel oxide synthesized in counter flow propane-oxygen flame on the surface of nichrome wire. Nanoparticles had the characteristic size of 50-300 nm depending on synthesis conditions and were sprayed on a solar cell surface. It is found that the nickel oxide nanoparticles have significant influence on the antireflection effect and, therefore, improve the solar cell performance. Optimum nanoparticles surface concentrations appropriating to maximal short-circuit current was detected. It is shown that the coating from nickel oxide increases efficiency of solar cells by to 4,7 % due to light scattering on them and magnification of a number of photons absorbed in the active region of solar cell.References
1 Zi S. Fizika poluprovodnikovykh priborov. – M.: Mir, – 1984. – T. 2. – 456 s.
2 Shockley W., Queisser H.J. Detailed balance limit of efficiency of p–n junction solar cells // Journal of Applied Physics. – 1961. – Vol. 32. – P. 510–519.
3 Southwell W.H. Gradient-index antireflect ion coatings // Optics Letters. – 1983. – Vol.8. – P. 584–586.
4 Shibata N. Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells // Japanese Journal of Applied Physics. – 1991. – Vol.30. – P. 997–1001.
5 Chang Y.A., Li Z.Y., Kuo H.C., Lu T.C., Yang S.F., Lai L.W., Lai L.H., Wang S.C. Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process// Semiconductor Science and Technology. – 2009. – Vol.24. – P. 342-349.
6 Stelzner T., Pietsch M., Andra G., Falk F., Ose E., Christiansen S. Silicon nanowire-based solar cells // Nanotechnology. – 2008. – Vol.19- P. 295 -303.
7 Tsai M.A., Tseng P.C., Chen H.C.,. Kuo H.C, Yu P.C. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays // Optics Express. – 2011.- Vol.19. – P. A28–A34.
8 Pi X.D., Li Q., Li D.S., Yang D.R. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency // Solar Energy Materials and Solar Cells. – 2011. – Vol.95. – P. 2941–2945.
9 Berkovits V.L., L'vova T.V., Ulin V.P.. Nitridnaya passivatsiya poverkhnosti GaAs (100): vliyaniye na elektricheskiye kharakteristiki poverkhnrostno-bar'yernykh struktur Au/GaAs // Fizika i tekhnika poluprovodnikov. – 2011. – T.45, vyp.12. – S.1637-1641.
10 Lesbayev B.T., Auyelkhankyzy M., Mansurov Z.A., Lesbayev A.B., Turesheva G.O., Prikhod'ko N.G., Mansurov B.Z. Sintez nanochastits oksida nikelya v diffuzionnom plameni na vstrechnykh struyakh // Vestnik KazNU. Seriya fizicheskaya. – 2012. – №4(43). – S.8-14.
2 Shockley W., Queisser H.J. Detailed balance limit of efficiency of p–n junction solar cells // Journal of Applied Physics. – 1961. – Vol. 32. – P. 510–519.
3 Southwell W.H. Gradient-index antireflect ion coatings // Optics Letters. – 1983. – Vol.8. – P. 584–586.
4 Shibata N. Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells // Japanese Journal of Applied Physics. – 1991. – Vol.30. – P. 997–1001.
5 Chang Y.A., Li Z.Y., Kuo H.C., Lu T.C., Yang S.F., Lai L.W., Lai L.H., Wang S.C. Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process// Semiconductor Science and Technology. – 2009. – Vol.24. – P. 342-349.
6 Stelzner T., Pietsch M., Andra G., Falk F., Ose E., Christiansen S. Silicon nanowire-based solar cells // Nanotechnology. – 2008. – Vol.19- P. 295 -303.
7 Tsai M.A., Tseng P.C., Chen H.C.,. Kuo H.C, Yu P.C. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays // Optics Express. – 2011.- Vol.19. – P. A28–A34.
8 Pi X.D., Li Q., Li D.S., Yang D.R. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency // Solar Energy Materials and Solar Cells. – 2011. – Vol.95. – P. 2941–2945.
9 Berkovits V.L., L'vova T.V., Ulin V.P.. Nitridnaya passivatsiya poverkhnosti GaAs (100): vliyaniye na elektricheskiye kharakteristiki poverkhnrostno-bar'yernykh struktur Au/GaAs // Fizika i tekhnika poluprovodnikov. – 2011. – T.45, vyp.12. – S.1637-1641.
10 Lesbayev B.T., Auyelkhankyzy M., Mansurov Z.A., Lesbayev A.B., Turesheva G.O., Prikhod'ko N.G., Mansurov B.Z. Sintez nanochastits oksida nikelya v diffuzionnom plameni na vstrechnykh struyakh // Vestnik KazNU. Seriya fizicheskaya. – 2012. – №4(43). – S.8-14.
Downloads
How to Cite
Manakov, S. M., Dikhanbayev, R. R., Taurbayev, T. I., Auyelkhankyzy, M., & Mansurov, Z. A. (2014). Decrease in optical losses in solar devices on the basis of gallium arsenide. Recent Contributions to Physics (Rec.Contr.Phys.), 48(1), 29–35. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/25
Issue
Section
Condensed Matter Physics and Materials Science Problems. NanoScience