The structure and phase composition of SiC epitaxial films, synthesized by atoms replacement

Authors

  • D.I. Bakranova Kazakh-British Technical University, Almaty, Kazakhstan
  • S.A. Kukushkin Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
  • K.Kh. Nussupov Kazakh-British Technical University, Almaty, Kazakhstan
  • A.V. Osipov Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
  • N.B. Beisenkhanov Kazakh-British Technical University, Almaty, Kazakhstan
        64 31

Keywords:

thin films, silicon carbide, dilatation dipoles, structure, crystallization

Abstract

In this paper, using X-ray diffraction, electron diffraction, atomic force microscopy and Raman microscopy the structure, phase composition and surface microstructure of SiC films, synthesized by substitution of atoms in a high-resistivity (111) oriented c-Si in a gas mixture of CO and SiH4 (264 Pa, 1250 ° C, 15 min) are studied. It is shown that 3C-SiC film is epitaxial and does not contain twins on the surface, the surface has a pyramidal structure with height variations up to 19 nm with a distinct fragmentation of grains with sizes of 100 to 200 nm. It is defined lateral dimensions of large crystals (85 × 110 µm) and average sizes of β-SiC nanocrystals (3 - 7 nm) with perfect structure in the transition region "film-substrate". An absence of large scratches on the SiC film surface is demonstrated. The developed crystalline surface of the film indicates the formation of high-quality SiC crystals due to the healing of contraction pores during a long time (15 min) high-temperature synthesis.

References

1. Choyke W.J., Matsunami H.M., Pensl G. Silicon carbide. A. Review of fundamental questions and application to current device technology. – Berlin: Akademie, 1998. – V. I, II.
2. Fissel A. Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties // Phys. Rep. – 2003. – Vol.379. – P.149-155.
3. Nishino S., Powell J.A., Will H.A. Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices // Appl. Phys. Lett. – 1983. – Vol. 42. – P.460.
4. Hamakawa Y. Physics and Applications of Amorphous Silicon Carbide. In: Rahman MM., Yang CY-W, Harris GL (Eds.), Amorphous and Crystalline Silicon Carbide II, Springer Proceedings in Physics, 1989. – Vol. 43. – P. 164–170.
5. Joung Y-H., Kang H.I., Kim J.H., Lee H-S, Lee J. and Choi W.S. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system // Nanoscale Research Letters. – 2012. – Vol. 7(1). – P.22.
6. Kukushkin S.A. and Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. of Phys. D: Appl. Phys. – 2014. – Vol.47. –P.313001-313041.
7. Kukushkin S.A., Osipov A.V., and Feoktistov N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review // Physics of the Solid State. – 2014. – Vol.56(8). – P.1507–1535.
8. Kukushkin S.A., Osipov A.V. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles // J. Appl. Phys. – 2013. – Vol.113(2) – P.024909-1-024909-7.
9. Кукушкин С.А., Осипов А.В., Феоктистов Н.А. Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности. – Патент на изобретение № 2363067, 2008.
10. Nussupov K.Kh., Beisenkhanov N.B. in: Moumita Mukherjee, Silicon carbide – Materials // Processing and Applications in Electronic Devices, InTech, 2011. – P.69−114.
11. Nussupov K.Kh., Beisenkhanov N.B., Valitova I.V., Mit’ K.A., Mukhamedshina D.M., Dmitrieva E.A. Structure properties of carbon implanted silicon layers // J. of Materials Science: Materials in Electronics. – 2008. – Vol.19. – P.254−262.
12. Jones F.W. The measurement of particle size by the X-ray method // Proc. Roy. Soc., London. – 1938. – 166A. – P. 16–43.
13. Scherrer .P Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen // Nachr. Ges. Wiss. Göttingen. – 1918. – Vol. 26. – P. 98-100.
14. Taylor A. X-ray Metallography. John Wiley & Sons, New York – London, 1961. – 993p.
15. Warren B.E., Biscoe J. // Journal of American Ceramic Society. – 1938. – Vol.21(1) P.49–54.
16. Bakranova D.I., Kukushkin S.A., Nussupov K.Kh., Osipov A.V., Beisenkhanov N.B. Epitaxial Silicon Carbide Films Grown by New Method of Replacement of Atoms on the Surface of High-resistivity (111) Oriented Silicon // MATEC Web of Conferences New York. – 2016. – Vol. 43. – P.01003.
17. Pezoldt J., Kups T., Stauden T., Schroter B. Polarity determination and control of SiC grown on Si // Materials Science and Engineering B. – 2009. – Vol.165. – P. 28–33.
18. Benemanskaya G.V., Dementev P.A., Kukushkin S.А., Lapushkin M.N., Osipov A.V., Senkovskiy B., Timoshnev S.N. Photoemission study of nano SiC epitaxial layers synthesized by a new method of the atom substitution in Si crystal lattice // Materials Physics and Mechanics. – 2015. – Vol.22. –P.183-190.

References
1. W.J. Choyke, H.M. Matsunami, G. Pensl Silicon carbide, A. Review of fundamental questions and application to current device technology. Akademie, Berlin. V. I, II. (1998)
2. A. Fissel, Phys. Rep. 379, 149-155. (2003)
3. S. Nishino, J.A.Powell, H.A. Will, Appl. Phys. Lett. 42, 460. (1983)
4. Y. Hamakawa, Physics and Applications of Amorphous Silicon Carbide. In: Rahman M.M., Yang CY.-W., Harris G.L. (Eds.), Amorphous and Crystalline Silicon Carbide II, Springer Proceedings in Physics. 43, 164–170. (1989)
5. Y.-H. Joung, H.I. Kang, J.H. Kim, H.-S. Lee, J. Lee and W.S. Choi, Nanoscale Research Letters 7(1):22. (2012).
6. S.A. Kukushkin, and A.V. Osipov, J. of Phys D: Appl. Phys. 47, 313001-313041. (2014).
7. S.A. Kukushkin, A.V. Osipov, and N.A. Feoktistov, Physics of the Solid State, 56(8), 1507–1535. (2014).
8. S.A. Kukushkin, A.V. Osipov, J. Appl. Phys. 113 (2), 024909-1-024909-7. (2013).
9. S.A. Kukushkin, A.V. Osipov and N.A. Feoktistov, Method of manufacturing an article comprising a silicon substrate with a silicon carbide film on its surface Patent № 2363067 (in Russian). (2008)
10. K.Kh. Nussupov, N.B. Beisenkhanov, in: Moumita Mukherjee, Silicon carbide – Materials, Processing and Applications in Electronic Devices, InTech, pp. 69−114. (2011).
11. K.Kh. Nussupov, N.B. Beisenkhanov, I.V. Valitova, K.A. Mit’, D.M. Mukhamedshina, E.A. Dmitrieva, J. of Materials Science: Materials in Electronics, 19, 254−262. (2008).
12. F.W. Jones, The measurement of particle size by the X-ray method. Proc. Roy. Soc., London 166A, 16–43. (1938).
13. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen, 26, 98-100. (1918).
14. A. Taylor, X-ray Metallography. John Wiley & Sons, New York – London, 993p. (1961).
15. B.E. Warren, J. Biscoe, Journal of American Ceramic Society, 21(1), 49–54. (1938).
16. D.I. Bakranova, S.A. Kukushkin, K.Kh. Nussupov, A.V. Osipov, N.B. Beisenkhanov Epitaxial Silicon Carbide Films Grown by New Method of Replacement of Atoms on the Surface of High-resistivity (111) Oriented Silicon, MATEC Web of Conferences 43, New York. P.01003. (2016).
17. J. Pezoldt, T. Kups, T. Stauden, B. Schroter, Materials Science and Engineering B, 165, 28–33. (2009).
18. G.V. Benemanskaya, P.A. Dementev, S.А. Kukushkin, M.N. Lapushkin, A.V. Osipov, B. Senkovskiy, S.N. Timoshnev, Materials Physics and Mechanics, 22, 183-190. (2015)

Downloads

How to Cite

Bakranova, D., Kukushkin, S., Nussupov, K., Osipov, A., & Beisenkhanov, N. (2018). The structure and phase composition of SiC epitaxial films, synthesized by atoms replacement. Recent Contributions to Physics (Rec.Contr.Phys.), 60(1), 46–51. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/512

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience