The influence of isothermal annealing on the optical and electrical properties of thin SnO2 films doped with fluorine

Authors

  • E.A. Dmitrieva Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan
  • D.M. Mukhamedshina Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan
  • K.A. Mit Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan
  • I.A. Lebedev Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan
  • E.A. Grushevskaya Institute of Physics and Technology, Satbaev University, Almaty, Kazakhstan
        112 46

Keywords:

thin SnO2 films, isothermal annealing, fluorine doping, sol-gel method, transparency, surface resistance, adsorption sensitivity, ethanol vapor

Abstract

In this paper, a comparative analysis of the effect of isothermal annealing (400°C) on optical transmission spectra, surface resistance and adsorption sensitivity to ethanol vapor of tin oxide films doped with fluorine ions and films obtained without the addition of a fluorinating agent, is carried out. An increase in the transparency of the films is shown during annealing for 3 hours. Further annealing leads to a significant decrease in the transparency of thin films. The band gap calculated from the transmission spectra corresponds to the value of the band gap of SnO2 at room temperature (Eg = 3.6 eV).The value of the gap width of films obtained from the sol with the addition of NH4F, with the duration of annealing varied within the accuracy of the measurements. With increasing duration of film annealing, the surface resistance increases. Films obtained from the sol with the addition of NH4F have a lower surface resistance than films obtained from the sol without additives. This is confirmed by the presence of fluoride ions in the films as additional sources of free charge carriers. It is shown that an increase in the annealing time at 400°C to three hours leads to an increase in the surface resistance and a decrease in the sensitivity to ethanol vapor. This, perhaps, is associated with the reduction of small defects and the rupture of bonds between individual sol particles. Six-hour annealing at 400°C leads to an even greater increase in surface resistance and an increase in sensitivity to ethanol vapor. Perhaps this is due to the appearance of microcracks and the destruction of individual sol particles.

References

1 A.A. Ponomareva Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata tehnicheskih nauk. (St. Petersburg, 2013), 18 p. (in Russ).

2 I.H. Kadhim, H. Abu Hassan, and Q.N. Abdullah, Nano-Micro Lett., 8(1), 20–28 (2016). doi 10.1007/s40820-015-0057-1

3 G. Fedorenko, L. Oleksenko, N. Maksymovych, G. Skolyar, and O. Ripko, Nanoscale Research Letters, 12:329 (2017), doi:10.1 186/s11671-017-2102-0

4 E.V. Sokovykh, L.P. Oleksenko, N.P. Maksymovych, and I.P. Matushko, Nanoscale Research Letters, 12:383 (2017). doi: 10.1 186/s11671-017-2152-3

5 G. Korotcenkov, V. Brinzari, and B.K. Cho, Journal of Sensors, 31, 3816094 (2016).

6 J.L Zhao, R. Deng, J.M. Qin, J. Song, D.Y. Jiang, B. Yao, and Y.F. Li, Journal of alloys and compounds, 748, 398-403 (2018). doi: 10.1016/j.jallcom.2018.03.180

7 G.K. Dalapati, A.K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, Progress in materials science, 95, 42-131 (2018). doi: 10.1016/j.pmatsci.2018.02.007

8 V .I. Kondrashin, Engineering sciences. Electronics, measuring equipment and radio engineering, 2(38), 93–101 (2016). doi: 10.21685/2072-3059-2016-2-8

9 K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H.S. Kim, and D. Vikraman, Journal of Materials Science: Materials in Electronics, 29(5), 3648–3656 (2018). doi:10.1007/s10854-017-8295-2

10 S.A. Belousov, A.A. Nosov, T.G. Men'shikova, and S.I. Rembeza, Vestnik Voronezhskogo Gosudarstvennogo Tehnicheskogo Universiteta, 22-25 (2016). (in Russ)

11 A. Kabir, D. Boulainine, I. Bouanane, G. Schmerber, and B. Boudjema, J of materials science-materials in electronics, 28(3), 2481-2486 (2017). doi: 10.1007/s10854-016-5821-6

12 M . Fukumoto, S. Nakao, Y. Hirose, and T. Hasegawa, Japanese journal of applied physics, 57(6), 060307 (2018). doi: 10.7567/JJAP.57.060307

13 D.M. Mukhamedshina, A. Mit’, N.B. Beisenkhanov, A. Dmitriyeva, and I.V. Valitova, J Mater Sci: Mater Electron, 19, 382-387 (2008). doi: 10.1007/s10854-008-9695-0

14 B.N. Mukashev, A.B. Aimagambetov, D.M. Mukhamedshina, N.B. Beisenkhanov, K.A. Mit’, I.V. Valitova, and E.A. Dmitrieva, Superlattices and microstructures, 42(1), 103-109 (2007). doi: 10.1016/j.spmi.2007.04.057

15 V . Kumar, K. Singh, M. Jain, Manju, A. Kumar, J. Sharma, A. Vij, and A. Thakur, Applied surface science, 552-558 (2018). doi: 10.1016/j.apsusc.2018.03.063

16 A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, and O. Vahidi, Sensors and Actuators B-Chemical, March, 294-301 (2018). doi: 10.1016/j.snb.2018.03.132

17 S.P. Rodrigues, M. Evaristo, S. Carvalho, A. and Cavaleiro, Applied surface science, 445, 575-585 (2018). doi: 10.1016/j.apsusc.2018.03.113

18 A. Riapanitra, Y. Asakura, W.B. Cao, Y. Noda, and S. Yin, Nanotechnology, 29(24) (2018) doi: 10.1088/1361-6528/aab752

19 M . Anitha, K. Saravanakumar, N. Anitha, and L. Amalraj, Applied surface science, 443, 55-67 (2018). doi: 10.1016/j.apsusc.2018.02.231

20 J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, and X. Wang, Nanotechnology, 29 (24), 245501 (2018). doi: 10.1088/1361-6528/aab9d8

21 F.L. Miguel, R. Mueller, S. Mathur, and F. Muecklich, Surface & coatings technology, 287, 93-102 (2016). doi: 10.1016/j. surfcoat.2015.12.085

22 B. Fu, J. Han, S.Q. Guo, Z. Wang, P. Zhang, Z.I. Pan, and Q. Xu, Rare metals, 37(10), 427-432 (2018). doi: 10.1007/s12598-018-1037-7

23 A. Srivastava, S.N. Tiwari, M.A. Alvi, and S.A. Khan, Journal of applied physics, 123(12), 125105 (2018). doi:10.1063/1.5018777

24 C. Ho, E. Hsieh, W.Z. Lee, P.T. Huang, Y.H. and T.T. Kuo, Applied surface science, 434, 1353-1360 (2018). doi: 10.1016/j.apsusc.2017.11.247

25 S. Kozyukhin, Yu. Vorobyov, P. Lazarenko, and M. Presniakov, Journal of non-crystalline solids, 480(15), 51-56 (2018). doi: 10.1016/j.jnoncrysol.2017.07.014.

Downloads

How to Cite

Dmitrieva, E., Mukhamedshina, D., Mit, K., Lebedev, I., & Grushevskaya, E. (2018). The influence of isothermal annealing on the optical and electrical properties of thin SnO2 films doped with fluorine. Recent Contributions to Physics (Rec.Contr.Phys.), 65(2), 68–75. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/649

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)